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a b s t r a c t

For high-quality processes where the defect rate is very low, e.g., parts per million (ppm), time-between-
events (TBE) control charts have several advantages over the ordinary control charts. Most existing TBE
control charts are based on the homogeneous Poisson process assumption, so that the distribution of TBE
can only be exponential. However, the exponential distribution is not suitable in many applications, espe-
cially when the failure rate is not constant. In this article, we introduce a new TBE control chart, based on
the renewal process, where the distribution of the TBE belongs to a parametric class of absolutely contin-
uous distributions, which includes some well-known and commonly used lifetime distributions, i.e.,
exponential, Rayleigh, Weibull, Burr type XII, Pareto and Gompertz. The control structure of the proposed
chart is derived analytically in general and numerical examples are presented for the Weibull distribu-
tion, due to its relevance in reliability. The performance of the proposed control charts is evaluated in
terms of some standard useful measures, including average run length (ARL), the standard deviation of
run length, the coefficient of variation of run length, expected quality loss (EQL) and relative ARL
(RARL). The effect of parameter estimation, using both maximum likelihood and Bayesian methods, is
also discussed. This study also presents an illustrative example and four case studies to highlight the
practical aspects of the new TBE chart.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A manufacturing process ability to meet specifications depends
on two factors: variation and accuracy. Variation is relative to the
specification width, and the process capability indices are used to
measure this relationship, while accuracy implies that the process
mean is at the nominal level. The purpose of the control chart is to
detect undesirable changes in the process as early as possible. The
choice of an appropriate control chart is a debatable point and con-
clusions are affected by many key factors. There are twomain types
of available control charts: attribute and variable control charts. To
monitor the fraction of nonconformities of a process, attribute con-
trol charts likep andnp, c andu, or r, are thewell-knownchartswhen
thenumbers of defects in a sample follows thebinomial, the Poisson,
or the negative binomial distribution, respectively. However, for
high quality processes with a very low defect rate (i.e. parts permil-
lion or per billion, especially in the fields of manufacturing of inte-
grated circuits, weapon systems, automobile engine and many

other automated processes) these charts have certain drawbacks,
i.e., high false alarm rates, negative values of lower control limits
for positive monitored quantities (cf. Table 1), undesirable depen-
dencies between sample size and control limits (when admissibility
of the latter is enforced) and poor approximation to the normal
distribution (cf. Chan, Dennis, Xie, & Goh, 2002). For example, if
we construct (approximate) control chart limits based on the
Poisson (P), binomial (B), negative binomial (NB) and zero-inflated
Poisson (ZIP) distributions, then upper control limits (UCL) and
lower control limits (LCL) are given as below:
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where p; r;p; k > 0 and k determine the confidence level, which is
usually set to 99.73% (corresponding to k ¼ 3, the so-called 3r
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limits of the normal approximation). To avoid the LCL to be nega-
tive, the following conditions for k, given n, must be satisfied:
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tively, making the desired false alarm rate unattainable if the nor-
mal approximation is poor. Alternatively, one could increase the

sample size, obtaining conditions n P k2=k, n P k2ð1� pÞ=p,
n P k2

rð1�pÞ and n P k2ð1þpkÞ
kð1�pÞ . Table 1 shows the sample sizes for the

commonly used 3r control limits as p gets smaller. Clearly, one
needs impractical sample sizes to monitor nonconformities
effectively.

Alternatively, one could try to use only one-sided charts, con-
trolling whether the monitoring statistics is larger than the UCL.
For the np-chart, for example, the upper 99.73% control limits with
p ¼ 0:01, as n ¼ 5, 10, 20, 50 and 100 are 1, 2, 2, 3 and 5. But,
because of the discreteness of the binomial distribution, the upper
control limit would be meaningless for very small p, e.g., for
p ¼ 10�4 and n ¼ 5, the upper control limit is zero.

Thus, traditional process monitoring techniques for count data
are not sufficient for high quality processes. In such situations,
the time between events (TBE) chart is an efficient approach for
monitoring, controlling and improving the process when the event
occurrence rate is very low. Here, the word ‘‘event” usually refers
to the occurrence of nonconforming items or of defects in the man-
ufacturing process, whereas ‘‘time” is the conforming run length
for discrete processes or the product quantity between two consec-
utively observed defects for continuous processes.

The available TBE control charts can be categorized into two
groups: attribute TBE and variable TBE. Most of the attribute TBE
charts are based on the geometric distribution (cf. Ali, Pievatolo,
& Göb, 2016), such as the cumulative count control (CCC) chart,
or on the negative Binomial distribution (e.g. the CCC-r chart).
One special variable TBE chart is the cumulative quantity control
(CQC) chart. As the occurrence of the events follows a Poisson
process, the time between two events follow an exponential distri-
bution, so CQC can also be called exponential chart, sometimes
denoted as t-chart. Calvin (1983) proposed the first CCC chart
based on the geometric distribution to monitor high-quality pro-
cesses while Nelson (1994) and Goh (1987) gave a detailed discus-
sion about its implementation. Xie, Goh, and Ranjan (2002) studied
some properties of the CCC, CQC and CQC-r charts. Cheng and Chan
(2010) proposed CCC-r chart based on the negative Binomial distri-
bution which is considered as an improvement to the existing CCC
chart. Later, Chan et al. (2002) proposed the cumulative probability
control (CPC) charts based on the geometric and exponential
distributions. Due to the popularity and simplicity of the Poisson
process, CQC charts are used in various applied fields like the mon-
itoring of the accident rate in a transportation system, the rate of
occurrence of congenital malformations or the volume of paper-
work between errors, etc. Zhang, Xie, and Goh (2006) introduced
an exponential control chart based on the sequential sampling
scheme with the self starting feature where the defect rate follows
a Poisson process. Shamsuzzaman, Xie, Goh, and Zhang (2009)
developed an economic model for the exponential chart to monitor

time-between-events data. Some recent contributions to the TBE
monitoring are: exponential TBE control charts using the repetitive
sampling concept proposed by Aslam, Khan, Azam, and Jun (2014),
the Gumbel bivariate exponential distribution control chart
proposed by Xie, Xie, and Goh (2011), TBE control charts using dif-
ferent sampling schemes proposed by Qu, Wu, Khoo, and Rahim
(2014), variable sampling interval and variable limits control
charts by Chen, Chen, and Chiou (2011). We refer to Ali et al.
(2016) for a comprehensive overview of TBE charts in high-
quality processes.

Most variable TBE control charts are based on the homogenous
Poisson process assumption (cf. Ali et al., 2016), so that the distri-
bution of TBE can only be assumed exponential. However, the
exponential distribution is not suitable in many applications, espe-
cially when the failure rate is not constant. The major aim of the
article is to generalize the available TBE charts to situations where
one could have an increasing, decreasing, bathtub or monotone
failure rate. Therefore, we propose the use of a renewal process
to generalize the existing homogenous Poisson TBE control charts.
In this article, we consider the development of a control chart
based on the renewal process where the distribution of time is
assumed to belong to a class of absolutely continuous distribu-
tions. This class includes exponential, Rayleigh, Weibull, Burr type
XII, Pareto and Gompertz distributions. A renewal process can be
regarded as a generalization of the ordinary Poisson process, where
the exponential distribution of time between occurrences is
replaced by any other lifetime distribution.

Definition 1.0.1. A counting process fNðtÞ; t � 0; t 2 Tg with inde-
pendent and identically distributed (iid) inter-arrival times
X1;X2; . . . having a common distribution F is called a renewal
process.

The use of a renewal process is motivated by TBE with a non-
constant hazard rate. Consider, for example, an industrial process
in which a sensor signals that a filter must be substituted. The
hazard of getting a substitution signal increase with time because
impurities trapped within the filter accumulate. After changing the
filter a renewal takes place, represented by a new filter with the
same hazard function. An increased renewal frequency with
respect to the nominal would indicate an upstream problem in
the process because filters are changed too often. Renewal theory
has many applications, especially in the field of repairable systems,
component testing, the time intervals of successive earthquakes in
a particular region and so on.

Thus, the present study is a generalization of the existing TBE
charts. This article also includes a study of the performance of
the proposed TBE control chart from different perspectives. We
derive explicit expressions of the control limits and of the ARL
for the members of the above-mentioned class of distributions.
Then we run numerical examples, where we compute and compare
ARLs for a selection of parameter shifts. To evaluate the overall per-
formance of control charts, the EQL and RARL are also computed.
Due to its effectiveness and wide usage, we carry out further anal-
yses on the Weibull chart: we illustrate simulated and real data
applications and we also include a study of the control chart
performance in presence of parameter estimation error.

The rest of the article is organized as follows: in Section 2, the
class of distributions is defined. The design of the TBE chart for
high yield processes is discussed in Section 3. In Section 4, it is
explained how the proposed methodology can be used in real
situations with the help of four illustrative examples. In Section 5,
some performance criteria for the evaluation of control chart per-
formances are presented. They are: average run length, expected
quadratic loss and relative average run length. The Bayesian and

Table 1
Values of n when k ¼ 3 for various distributions of the monitoring statistics.

Distribution p (ppm)

100 400 800 5000 10,000 200,000

P 90,000 22,500 11,250 1800 900 45
B 89,991 22,491 11,241 1791 891 36
NB (GM-r = 1) 90,000 22,500 11,250 1800 900 45
NB (r = 10) 9000 2250 1125 180 90 5
ZIP (p ¼ 0:2) 112,502 28,127 14,065 2252 1127 59
ZIP (p ¼ 0:4) 150,006 37,506 18,756 3006 1506 81
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