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a b s t r a c t

We consider integrated production and batch delivery scheduling in a make-to-order production system
involving two competing agents, each of which having its own job set competes to process its jobs on a
shared single machine. To save the delivery cost, the jobs of the same agent can be processed and deliv-
ered together batches. The completion time of each job in the same batch coincides with the batch com-
pletion time. A batch setup time is incurred before the processing of the first job in each batch. Each of the
agents wants to minimize an objective function depending on the completion times of its own jobs. The
goal is to determine a schedule for all the jobs of the two agents that minimizes the objective function of
one agent, while keeping the objective function value of the other agent below or at a given value. For
each of the problems under consideration, we either provide a polynomial-time algorithm to solve it
or show that it is NP-hard. In addition, for each of the NP-hard problems, we present a mixed integer
linear programming (MILP) formulation and provide a pseudo-polynomial dynamic programming algo-
rithm, establishing that it is NP-hard in the ordinary sense only, and show that it admits an efficient fully
polynomial-time approximation scheme, if viable. Finally, we compare the performance of the pseudo-
polynomial dynamic programming algorithms against the corresponding MILP formulations with ran-
domly generated instances.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the following scheduling problem: There are two
competing agents (A and B) each having its own set of independent
and non-preemptive jobs to process on a shared single machine.
Agent A has to process the job set J A ¼ fJ A1 ; J A2 ; . . . ; J AnAg, whereas

agent B has to process the job set JB ¼ fJB1; JB2; . . . ; JBnBg. All the jobs
are available for processing from time zero onwards. The jobs
belonging to J A (resp., JB) are called the A-jobs (resp., B-jobs). Asso-
ciated with each job J Aj (resp., JBj ), there are a processing time pA

j

(resp., pB
j ), a weight wA

j (resp., wB
j ), and a due date dA

j (resp., dB
j ).

All the data are assumed to be nonnegative integers. Let
n ¼ nA þ nB represent the total number of jobs and P ¼ PA þ PB

denote the total processing time of all the jobs, where
PA ¼PnA

j¼1 p
A
j and PB ¼PnB

j¼1 p
B
j .

The jobs are processed and delivered in batches. A batch can
contain jobs only of the same agent, and a batch is referred to as
an A-batch (resp., B-batch) if it contains only the A-jobs (resp., B-
jobs). Each A-batch (resp., B-batch) has a sequence-independent
batch setup time sA (resp., sB) and batch delivery cost uA (resp.,
uB) independent of the number of jobs in the batch. We adopt
the serial-batching or s-batch assumption, whereby all the jobs in
a batch are considered to have been completed together at the
completion time of the last job in the batch, i.e., the processing
time of a batch is equal to the total processing time of the jobs
in the batch, and the completion time of each job in a batch is
defined as the completion time of the batch. For the sake of sim-
plicity, we assume that batch delivery is instantaneous.

For any schedule, denote the completion time of job J Aj (resp., JBj )

by C A
j (resp., CB

j ). Each agent wants to minimize an objective func-
tion depending on the completion times of its jobs only. The two
objective functions may be the same or different. We focus on
the constrained optimization problem where the objective func-
tion value of agent A has to be minimized, whereas the objective
function value of agent B must be kept less than or equal to a given
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value U. Following Agnetis, Mirchandani, Pacciarelli, and Pacifici
(2004), we denote the scheduling problem under study as
ajbjcA : cB, where cA and cB denote the objective functions of
agents A and B, respectively. Specifically, we consider the following

problems: 1js� batchjPC A
j þmAuA : LBmax þmBuB, 1js� batchjP

C A
j þmAuA :

P
CB
j þmBuB, 1js� batchjPC A

j þmAuA :
P

wB
j U

B
j þ

mBuB, and 1js� batchjPwA
j U

A
j þmAuA :

P
wB

j U
B
j þmBuB, where

LBmax ¼maxj¼1;2;...;nBfCB
j � dB

j g, UA
j ¼ 1 (resp., UB

j ¼ 1) if C A
j > dA

j

(resp., CB
j > dB

j ) and UA
j ¼ 0 (resp., UB

j ¼ 0) otherwise, and mA (resp.,
mB) denotes the number of batches for agent A (resp., B).

The following practical example concerning a two-level supply
chain that involves a manufacturer and two customers (i.e.,
agents), namely agents A and B, motivates the scheduling problem
under study. In this example, the manufacturer, referred to as a
single ‘‘machine”, receives from agents A and B two sets of cus-
tomer orders, referred to as ‘‘jobs”. A sufficient number of vehicles
are available to deliver the finished orders to the customers, where
each shipment can take any number of jobs and the cost per deliv-
ery is fixed. To save the delivery cost, the finished orders of each
customer are delivered in batches. The processing requirement dic-
tates that the orders belonging to the same batch (a delivery ship-
ment) are processed contiguously and the dispatch date of a batch
is equal to the completion time of the last order in the batch. A
setup time is needed to perform some cleaning operations, or
remove a previous container and install a new one when the man-
ufacturer switches processing from one batch to another batch. The
scheduling criteria involve the two customers’ service levels, which
are evaluated by different performance measures depending on the
two customers’ preferences. This situation can be modeled as our
scheduling problem.

1.1. Literature review

The general problem under consideration in this paper falls into
the following two categories of scheduling problem, namely batch
delivery scheduling and multi-agent scheduling.

Batch scheduling, which combines job sequencing and parti-
tioning, has attracted much attention of scheduling researchers
in recent years. Potts and Kovalyov (2000) survey the batching
issues in scheduling. However, classical batch scheduling research
treats the delivery cost as either negligible or irrelevant. In other
words, it focuses on machine scheduling, while ignoring job deliv-
ery scheduling. Production and distribution operations are two key
operational functions in a supply chain. To achieve optimal opera-
tional performance in a supply chain, it is crucial to integrate these
two functions, and plan and schedule them jointly in a coordinated
manner (Chen, 2010). First to consider batch delivery scheduling,
Cheng, Ng, and Yuan (2008) study a single-machine batch delivery
scheduling problem to minimize the sum of the total weighted ear-
liness (the difference between a job’s delivery date and completion
time) and delivery cost. They show that the problem is NP-hard in
the ordinary sense, and the case of the problem where the weights
are equal is polynomially solvable. Hall and Potts (2003) study a
variety of scheduling, batching, and delivery problems in supply
chains with the objective of minimizing the overall scheduling
and delivery cost. The scheduling criteria they consider include
the sum of flowtimes, maximum lateness, and number of late jobs.
For each problem considered, they either derive an efficient
dynamic programming solution algorithm or show that it is
intractable. Ji, He, and Cheng (2007) consider single-machine batch
delivery scheduling to minimize the sum of the total weighted flow
time and delivery cost. They show that the problem is NP-hard in
the strong sense and present polynomial-time algorithms for two

special cases of the problem. Steiner and Zhang (2009) study
single-machine batch delivery scheduling with batch setup times,
where the objective is to minimize the sum of the weighted num-
ber of late jobs and delivery cost for multiple customers. They pre-
sent a pseudo-polynomial dynamic programming algorithm for the
restricted case where the tardy jobs are delivered separately at the
end of the schedule. They then convert the algorithm into a fully
polynomial-time approximation scheme (FPTAS) and show that it
produces near-optimal solutions with low constant approximation
ratios for the original problem. Steiner and Zhang (2011) consider
single-machine batch delivery scheduling with due date assign-
ment and batch setup times, where the objective is to minimize
the sum of the weighted number of tardy jobs, due-date-
assignment cost, and the batch delivery cost for a supplier whose
system can be modeled by a single machine. They develop a
pseudo-polynomial dynamic programming solution algorithm
and then convert it into an FPTAS. Extending the problem studied
by Steiner and Zhang (2011) to the case with multiple customers,
Rasti-Barzoki and Hejazi (2013) formulate it as an integer pro-
gramming problem, and present a heuristic and a branch-and-
bound method to solve it. Yin, Cheng, Hsu, and Wu (2013) consider
single-machine batch delivery scheduling with an assignable com-
mon due window. The objective is to find the optimal size and
location of the window, the optimal dispatch date for each job,
and an optimal job sequence to minimize a cost function based
on earliness, tardiness, holding time, window location, window
size, and batch delivery. They show that the problem is polynomi-
ally solvable by a dynamic programming algorithm. For recent
results on batch delivery scheduling, the reader may refer to the
survey paper of Chen (2010).

Perez-Gonzalez and Framinan (2014) review multi-agent
scheduling research. In the last decade, multi-agent scheduling
models has been successfully applied to many areas such as
manufacturing, supply chain management, telecommunication
services, project scheduling, and so on. Agnetis et al. (2004) and
Baker and Smith (2003) first consider scheduling models in which
two agents compete for the usage of a shared processing resource
and each agent has its own objective function to optimize. The
problem is either to find a schedule that minimizes a combination
of the agents’ objective functions or to find a schedule that satisfies
each agent’s requirements for its own objective function. Baker and
Smith (2003) focus on finding a schedule that minimizes a combi-
nation of the agents’ objective functions, which include the maxi-
mum of some regular functions (associated with each job), total
(weighted) completion time, and number of late jobs. Agnetis
et al. (2004) consider the same objective functions but focus on
finding a schedule that satisfies each agent’s requirements for its
own objective function in various machine settings. Recently, some
researchers consider multi-agent scheduling in the context of
batch scheduling. Mor and Mosheiov (2011) study two-agent
scheduling on a serial-batching machine. The objective is to mini-
mize the flowtime of one agent, subject to an upper bound on the
flowtime of the other agent, where they assume that the jobs and
(agent-dependent) setup times are identical, and that the batches
of the other agent must be processed continuously. They develop
an Oðn3=2Þ algorithm to solve the problem. Li and Yuan (2012) con-
sider two-agent scheduling on a common unbounded parallel-
batching machine (i.e., jobs are processed in parallel), in which
the job families are incompatible (i.e., the jobs from different fam-
ilies cannot be processed in the same batch) or compatible (i.e., all
the jobs can be processed in the same batch). The objective is to
minimize the objective function of one agent, while keeping the
objective function value of the other agent from exceeding a given
value. They provide plynomial-time and pseudo-polynomial-time
algorithms to solve problems involving various combinations of
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