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a b s t r a c t

An important way to try reducing environmental damage in the manufacture of industrialized goods is
through the use of production systems which deal with the reuse of returned materials such as reverse
logistics. In this paper, we consider a production planning problem arising in the context of reverse logis-
tics, namely the economic lot-sizing with remanufacturing (ELSR). In the ELSR, deterministic demand for
a single item over a finite time horizon has to be satisfied, which can be performed from either newly
produced or remanufactured items, and the goal consists in minimizing the total production costs. Our
objective is to devise approaches to solve larger (more difficult) instances of the problem available in
the literature to optimality using a standard mixed-integer programming (MIP) solver. We present a mul-
ticommodity extended formulation and a strengthened Wagner–Whitin based formulation, which makes
use of a priori addition of newly described valid inequalities in the space of original variables. We also
propose a novel dynamic heuristic measure based on the cost structure to automatically determine the
size of a partial version of the Wagner–Whitin based formulation. Computational results show that the
novel partial Wagner–Whitin based formulation with the size automatically determined in a heuristic
way outperforms all the other tested approaches, including a best performing shortest path formulation
available in the literature, when we consider the number of instances solved to proven optimality using a
standard MIP solver. This new approach allowed to solve to optimality more than 96% of the tested
instances for the ELSR with separate setups, including several instances that could not be solved
otherwise.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The economic lot-sizing with remanufacturing (ELSR) has
received great attention in recent years, and one of the reasons is
the increasing interest in the search for better ways to provide sus-
tainable production systems that can be implemented effectively.
The problem consists in planning the production of new items
from raw materials together with the remanufacture of returned
items in order to satisfy the deterministic demands over a finite
discrete time horizon while minimizing the total production costs.
The problem was independently shown to be NP-Hard in Baki,
Chaouch, and Abdul-Kader (2014) and Retel Helmrich, Jans, van
den Heuvel, and Wagelmans (2014) (also Retel Helmrich (2013)).

A basic production planning problem in the literature is the
uncapacitated lot-sizing (ULS). Wagner and Whitin (1958) consid-
ered the ULS in a seminal work on the algorithmic treatment given
to production planning problems. Barany, Van Roy, and Wolsey
(1984a,b) proposed the ðl; SÞ-inequalities and showed that together
with basic constraints they give the convex hull of the set of feasi-
ble solutions. Extended formulations were proposed in Krarup,
Bilde, and location (1977) (multicommodity or facility location)
and Eppen and Martin (1987) (shortest path). Since then, valid
inequalities have been widely used to treat several production
planning models (see Pochet & Wolsey (2006) for an extensive
review).

The economic lot-sizing with remanufacturing is an extension
of the ULS in which remanufacturing options are available and
has been recently studied in several works. Richter and
Sombrutzki (2000) treated a simple version of the problem in
which both production and remanufacture are unlimited, i.e. the
amount of returned items available at the beginning of the plan-
ning horizon is enough to satisfy the entire demand, and the costs
are time invariant. The authors analyzed the properties of optimal
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solutions and proposed a dynamic programming algorithm. Richter
and Weber (2001) extended this uncapacitated model to treat time
variant costs in a reverse Wagner–Whitin model with variable
manufacturing and remanufacturing costs.

Teunter, Bayindir, and van den Heuvel (2006) treated the eco-
nomic lot-sizing with remanufacturing with both separate and
joint setup costs. The authors obtained a polynomial time algo-
rithm for the case with joint setup and stationary costs and pro-
posed heuristics for both joint and separate setup variants. Later,
Schulz (2011) generalized the Silver-Meal heuristic presented in
(Teunter et al., 2006). Baki et al. (2014) proposed an alternative
mixed-integer programming (MIP) formulation for the problem
and showed that it provided better linear relaxation bounds than
a standard formulation. They also developed a dynamic program-
ming based heuristic and performed extensive numerical experi-
ments, using several instances with a small planning horizon of
12 periods and some with larger planning horizons, to validate
the good performance of the heuristic.

Retel Helmrich et al. (2014) compared MIP approaches to the
ELSR and proposed a shortest path formulation, an approximate
shortest path formulation and valid inequalities based on the
ðl; S;WWÞ-inequalities for the ULS which were added a priori to a
standard formulation in order to obtain a Wagner–Whitin based
formulation. They performed computational experiments compar-
ing the approaches and also showed that the problem with joint
setups is NP-Hard when the costs are time variant. Recently,
Sifaleras, Konstantaras, and Mladenović (2015) developed a vari-
able neighborhood search heuristic (VNS) to the problem. The pro-
posed VNS heuristic outperformed the state-of-the-art heuristic
methods from the literature in the reported computational exper-
iments using a set of benchmark instances (6480 instances with 12
periods each) proposed by Schulz (2011). They also presented a
new benchmark set of larger (more difficult) instances, with 52
periods, and demonstrated the robustness of the approach using
these new instances. Some authors also considered multi-item
extensions of the ELSR. Sahling (2013) proposed a column genera-
tion approach for a multi-item extension of the ELSR which also
included big bucket capacity constraints on production and reman-
ufacture. More recently, Sifaleras and Konstantaras (in press) stud-
ied another multi-item variant of the problem and proposed a
variable neighborhood descent (VND) heuristic which was shown
to outperform the use of a standard MIP solver through computa-
tional experiments.

Our work concentrates on mixed-integer programming
approaches in an attempt to, using a standard MIP solver, solve
to optimality the largest instances of the economic lot-sizing with
remanufacturing available in the literature. Therefore, we limited
ourselves to two benchmark sets of instances: the first one pro-
posed by Sifaleras et al. (2015) (108 instances with 52 periods
each), and the second proposed by Retel Helmrich et al. (2014)
(120 instances with 25 periods, 120 instances with 50 periods
and 120 instances with 75 periods).

The economic lot-sizing with remanufacturing can be formally
defined as follows. There is a single item with deterministic
demand over a finite discrete time horizon of NT periods. The
demand for each period t 2 f1 . . .NTg is dt and the amount of
returned items arriving at each period is rt . Production of new
items is unlimited while the remanufacture is restricted to the
availability of returned items. There are fixed and variable produc-
tion costs (respectively f pt and pp

t ) as well as fixed and variable
remanufacture costs (respectively f rt and pr

t). The storage of fin-
ished items implies a cost of hp

t per unit and that of returned items
a cost of hr

t per unit. The ELSR has two main variants, namely the
economic lot-sizing with remanufacturing and separate setups
(ELSRs) in which there are separate setups for production and for

remanufacture, and the economic lot-sizing with remanufacturing
and joint setups (ELSRj) in which both production and remanufac-
ture share the same setup. It is assumed that there is no initial
stock of either finished or returned items and no final stocks of fin-
ished items. In addition, all data is non negative, the cumulated
demand in the interval ½k; t� is defined as dkt ¼

Pt
l¼k dl for

1 6 k 6 t 6 NT and the cumulated amount of returned items in
the interval ½k; t� as rkt ¼

Pt
l¼k rl for 1 6 k 6 t 6 NT.

The remainder of the paper is organized as follows. In Section 2
we formally define the economic lot-sizing with remanufacturing
and separate setups using a standard MIP formulation. The shortest
path formulation of Retel Helmrich et al. (2014) is presented in
Section 3. A new multicommodity formulation is introduced in
Section 4, and a Wagner–Whitin based formulation is given in Sec-
tion 5 together with new valid inequalities to the problem and a
heuristic technique to determine the size of a partial formulation
based on the problem’s cost structure. In Section 6 we show how
the approaches devised for ELSRs can be adapted to deal with
ELSRj. Computational experiments are summarized in Section 7.
The results show that the multicommodity formulation outper-
forms the considered shortest path formulation (which was the
best approach in (Retel Helmrich et al., 2014) when we consider
the number of instances solved to optimality) for most of the cases,
and that the partial Wagner–Whitin formulation with automati-
cally determined size outperforms all the other approaches allow-
ing to solve several additional instances to optimality. Some final
remarks are discussed in Section 8.

2. The economic lot-sizing with remanufacturing and separate
setups

In this section, we present a formal description of the economic
lot-sizing with remanufacturing and separate setups (ELSRs) using
a standard mixed-integer programming formulation.

With the purpose of formulating the problem as a mixed-
integer program, consider xpt to be the amount of items produced
in period t; xrt to be the amount of items remanufactured in period
t; spt to be the amount of finished items in stock at the end of per-
iod t; srt to be the amount of returned items in stock at the end of
period t; ypt to be equal to 1 if production happens in period t and
to be 0 otherwise, and yrt to be equal to 1 if remanufacture happens
in period t and to be 0 otherwise. Using the variables just
described, the problem can be formulated as

min
XNT
t¼1

ðhp
t s

p
t þ pp

t x
p
t þ f pt y

p
t Þ þ

XNT
t¼1

ðhr
t s

r
t þ pr

tx
r
t þ f rty

r
tÞ ð1Þ

spt�1 þ xpt þ xrt ¼ dt þ spt ; for 1 6 t 6 NT; ð2Þ
srt�1 þ rt ¼ xrt þ srt ; for 1 6 t 6 NT; ð3Þ
xpt 6 dt;NTy

p
t ; for 1 6 t 6 NT; ð4Þ

xrt 6 minfr1t; dt;NTgyrt ; for 1 6 t 6 NT; ð5Þ
xp; xr ; sp; sr 2 RNT

þ ; ð6Þ
yp; yr 2 f0;1gNT : ð7Þ
The objective function minimizes the total cost. Constraints (2)

are balance constraints regarding the finished items while con-
straints (3) are balance constraints for the returned items. Con-
straints (4) force the production setup variables to be equal to
one if production occurs. Constraints (5) enforce the remanufac-
ture setup variables to be equal to one if remanufacture occurs.
Note that, differently from Retel Helmrich et al. (2014), in (5) the
cumulated returns r1t are also considered as upper bounds on
remanufacture in an attempt to obtain better linear relaxation
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