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a b s t r a c t

Uncertain data in practical optimization problems led to emerge of robust optimization approaches,
whereby solutions with more stable quality against perturbations are constructed. Furthermore, to avoid
over-conservatism, different kinds of uncertainty sets are introduced. In most of these approaches, uncer-
tain coefficients of the problems are assumed to be independent. While in practice, these coefficients are
often influenced by several common uncertainty sources which cause dependency among uncertain coef-
ficients. In this research, a new uncertainty set based on estimated correlation matrix of uncertain coef-
ficients is introduced. It is followed by a robust counterpart formulation of the problem using the
proposed uncertainty set. To evaluate the performance of the proposed model it is applied on a couple
of uncertain optimization problems. The experimental results revealed that when significant correlations
between the coefficients exist, the performance of the proposed method is superior to that of the tradi-
tional polyhedral uncertainty set. The results are discussed and concluding remarks are made.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In a real-world environment where the values of the corre-
sponding parameters are influenced by unpredictable events, deal-
ing with uncertainties are inevitable. In business applications,
social sciences, physical sciences and engineering, data are often
incomplete or contain measurement errors (Mulvey, Vanderbei, &
Zenios, 1995). Ben-Tal, El Ghaoui, and Nemirovski (2009) demon-
strated that in a linear programming problem, a small perturbation
in nominal data may result in severely infeasibility of optimal solu-
tion. There are several approaches including stochastic optimiza-
tions, robust optimizations and fuzzy programming that can be
used to model uncertainty (Soltani, Sadjadi, & Tavakkoli-
Moghaddam, 2013). In the stochastic optimization approach, it is
assumed that the uncertain data is random and its probability dis-
tribution is known (Ben-Tal et al., 2009). Deciding about the appro-
priate probability density function for a set of historical data may
be difficult as it contains inaccuracy. Furthermore, sometimes lack
of historical data makes it impractical to determine a probabilistic
distribution of the uncertainty. Robust optimization approach for-
mulates the uncertainty assuming that the value of an uncertain
coefficient varies in a known interval rather than proposing a prob-
ability distribution.

Soyster’s approach in formulating robust models is one of the
earliest works in this area (Soyster, 1973). He simply assumed that
for an uncertain optimization problem each coefficient may
perturb independently throughout an interval. In such an
environment the robust solution can be obtained by taking into
account the worst value of each coefficient. Despite the fact that
the Soyster’s approach guaranties feasible solutions with respect
to every possible realization of coefficients, it results over-
conservatism.

To avoid over-conservatism, Ben-Tal and Nemirovski (1998),
EI-Ghaoui and Lebret (1997), El Ghaoui, Oustry, and Lebret
(1998) in independent works, developed robust models by making
a tradeoff between the robustness and optimal value of the objec-
tive function. They proposed an ellipsoidal uncertainty set upon
which they introduced robust counterpart formulation. As another
prominent studies to avoid over-conservatism the works of
Bertsimas and Sim (2003, 2004) are considerable. They proposed
a polyhedral uncertainty set and the corresponding robust coun-
terpart which its level of robustness can be adjusted. Moreover,
their model has the advantage of lower computational burden
because of the linear structure compared with the former robust
model under ellipsoidal set. This enabled the researchers to widely
use the model in different areas includes logistics and production
systems (Hazır & Dolgui, 2013; Lu, Ying, & Lin, 2014), power engi-
neering (Baringo & Conejo, 2011; Thatte, Viassolo, & Xie, 2012),
portfolio selection problem (Gregory, Darby-Dowman, & Mitra,
2011), data envelopment analysis (Omrani, 2013; Shokouhi,
Hatami-Marbini, Tavana, & Saati, 2010), etc. The ellipsoidal and
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polyhedral uncertainty sets are introduced more in detail in
Sections 2.2 and 2.3, respectively.

The research carried out by Mulvey et al. (1995) can also be
considered as another valued research for an environment with
uncertain coefficients with finite discrete values. They developed
a robust model where the value of the uncertain coefficients are
described using a set of scenarios each one with a specific probabil-
ity. The objective function of the corresponding model is deter-
mined considering optimality robustness as well as the feasibility
robustness. Their approach yields a series of solutions that are less
sensitive to realizations of the data in a set of scenarios (Rahmani,
Ramezanian, Fattahi, & Heydari, 2013).

Besides tackling with uncertainty sets, determining an appro-
priate interval for each uncertain coefficient is another prominent
issue for robust formulation. When historical data exist they can be
used to determine the bounds of the interval. For this purpose,
usually the minimum and the maximum observed data are used
as the lower and the upper bounds, respectively. In addition
Pachamanova (2002) argued that if information about the standard
deviation of the uncertain coefficients is available, it can be
employed to determine the bounds of intervals. This proposed
method uses the normalized value of the ratio of perturbation to
the standard deviation of the historical data to model uncertain-
ties. Also, Bertsimas and Pachamanova (2008) suggested a robust
polyhedral formulation model based on the above addressed
approach for a multi-period portfolio selection problem where
future asset returns were considered as uncertain coefficients.

Bertsimas and Sim (2004) stated when correlation between
data exists, it is required to determine the interval based on the
sources of uncertainties. They assumed that the actual value of a
specific coefficient depends on the estimated value plus the varia-
tions caused by uncertain sources. The proposed approach is for-
mulated as follows:

~aij ¼ aij þ
X
k2Ki

~gikgkj ð1Þ

where aij and ~aij represent the nominal and the actual value of
uncertain coefficient, respectively. gkj is a value which indicates
how the uncertainty source k acts on ~aij, and ~gik denotes the value
of independent and symmetrically distributed random variables
varying in a range of [�1, 1]. For details the readers are referred
to (Bertsimas & Sim, 2004). The review of the research reveals this
approach is used as a prevailing approaches to determine the
bounds of the interval of uncertain coefficients. In this approach,
the effectiveness of the model depends on how the values of aij

and gkj are determined. Ferreira, Barroso, and Carvalho (2012)
employed Bertsimas and Sim’s approach for correlated data in a
demand response model and offered a couple of procedures to
determine these values based on Principle Component Analysis
(PCA) and Minimum Power Decomposition (MPD) whereby K prin-
ciple sources of uncertainties are identified from H-variate data.
This is followed by generating the value of the corresponding gkj.

In general, when the sources of uncertainties are known and the
corresponding data can be identified, the approach proposed by
Bertsimas and Sim is an effective approach to obtain robust solu-
tions. However, in practice it is usually difficult to identify such
sources. For instance, in a production optimization problem the
prices of the raw materials could be subject to uncertainty. This
uncertainty can be caused by several sources such as the price of
complementary or substitute goods, transportation costs, tax rate,
etc. Each of these sources can have a substantial effect on the prices
of raw materials but clearly defining all these sources is very diffi-
cult. Furthermore, even if the sources are known, it is more compli-
cated to determine an appropriate function between the uncertain
coefficients and the source. In such a circumstance, an alternative

approach can be developed to formulate the robust optimization
model considering the correlation between uncertain coefficients
without necessity to identify the detailed sources.

In this study, we consider a linear programming problem with
uncertain coefficients and assume that the estimate of the correla-
tion matrix between uncertain coefficients is available, but recog-
nizing the sources of uncertainty is not possible. We introduce a
new polyhedral uncertainty in which its domain depends on the
values of the correlation matrix. This matrix is assumed to be
exploited from the historical data. Then, a robust counterpart is
formulated based on the introduced uncertainty set. Furthermore,
the performance of the proposed robust optimization model is
studied.

The rest of this paper is organized as follows: In Section 2, a
summary of the most prominent uncertainty sets and correspond-
ing robust counterpart problems are reviewed. In Section 3, the
new uncertainty set is introduced. In Section 4, the mathematical
formulation of the proposed uncertainty set is presented. The
model of the robust counterpart optimization problem under the
introduced uncertainty set is introduced in Section 5. In Section 6,
the experimental results are presented and finally in Section 7, the
results are discussed and concluding remarks are made.

2. Review of literature on uncertainty sets and respective robust
optimization models

In this section, the most prominent uncertainty sets and corre-
sponding robust optimization models proposed by the researchers
are briefly reviewed. To this aim, let consider the following uncer-
tain linear programming problem under different uncertainty sets:

max c0X
AX 6 b
l 6 X 6 u

ð2Þ

Without loss of generality it is often assumed that only matrix A
is subject to uncertainty. If the coefficients of the objective function
or right hand side of the constraints are subject to uncertainty, it
can be formulated as follows (Li, Ding, & Floudas, 2011):

max z

Subject to : z� c0x 6 0
x0bþ Ax 6 0
x0 ¼ �1
l 6 x 6 u

ð3Þ

The uncertain matrix A is composed of entries ~aij as actual val-
ues of coefficients and can take values in the range
aij � âij; aij þ âij
� �

where aij is the nominal value of ~aij, and âij detes
the maximum positive perturbation. Hence ~aij. can be defined as:

~aij ¼ aij þ fijâij � 1 6 fij 6 1 ð4Þ
where in general, fij is a random variable which is subject to uncer-
tainty and perturbs in the range [�1, 1]. In the remaining of this sec-
tion the uncertain problem (2) is considered under different
uncertainty sets.

2.1. Box uncertainty set and its robust formulation

In an uncertain optimization problem, it is assumed that fijs are
random variables and independent. Their absolute values vary
between zero and Wi. The interaction of perturbations creates a
box which is called Box Uncertainty. This uncertainty set can be
described as follows:

UA ¼ ~aij ¼ aij þ fijâij jfijj 6 Wi

�� ;8i� � ð5Þ
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