Computers & Industrial Engineering 98 (2016) 300-307

journal homepage: www.elsevier.com/locate/caie

Contents lists available at ScienceDirect

Computers & Industrial Engineering

computers &
industrial engineering

A hybrid iterated greedy algorithm for total tardiness minimization in

permutation flowshops

Korhan Karabulut

Software Engineering Department, Yasar University, Izmir, Turkey

@ CrossMark

ARTICLE INFO ABSTRACT

Article history:

Received 5 March 2015

Received in revised form 4 May 2016
Accepted 9 June 2016

Available online 10 June 2016

Keywords:

Flowshop problem
Scheduling

Tardiness

Iterated greedy algorithm
Random search

The permutation flowshop scheduling problem is an NP-hard problem that has practical applications in
production facilities and in other areas. An iterated greedy algorithm for solving the permutation flow-
shop scheduling problem with the objective of minimizing total tardiness is presented in this paper.
The proposed iterated greedy algorithm uses a new formula for temperature calculation for acceptance
criterion and the algorithm is hybridized with a random search algorithm to further enhance the solution
quality. The performance of the proposed method is tested on a set of benchmark problems from the
literature and is compared to three versions of the traditional iterated greedy algorithm using the same
problem instances. Experimental results show that, the proposed algorithm is superior in performance to
the other three iterated greedy algorithm variants. Ultimately, new best known solutions are obtained for
343 out of 540 problem instances.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Efficient scheduling is very important in production, manufac-
turing, information processing, and transportation systems
(Pinedo, 2012). The permutation flowshop problem (PFSP) is a
combinatorial optimization problem in which there is a set
N={1,2,...,n} of n jobs to be processed on a set
M = {1,2,...,m} of m machines. Jobs are executed in the same
order on all machines starting from machine 1 to machine m.
The objective is to find a permutation of jobs that optimizes a given
criterion. The most widely used optimization objective is the min-
imization of the maximum completion time, also known as, the
makespan or Cpq. In real life applications, scheduling problems
may have due dates which make the problem more difficult. Max-
imum lateness, number of tardy jobs, total tardiness and total
weighted tardiness are among several objectives for scheduling
problems that involve due dates (Pinedo, 2012). Tardiness of a
job is defined as T; = max{Cp; — d;, 0} where Gy; is the completion
time of job j on the last machine and d; is its due date. There is a
positive tardiness if the job j finishes after its due date; otherwise
tardiness for the job will be 0. The completion time of job
j on machine i is calculated as Cj =max{Ci,,Cij_1} +py,

i=1,2,...,mandj=1,2,...,n where p; is the processing time
of job j on machine i, Co;=0 for j=1,2,...,n and G=0 for
i=1,2,...,m. The objective used in this paper is the minimization

E-mail address: korhan.karabulut@yasar.edu.tr

http://dx.doi.org/10.1016/j.cie.2016.06.012
0360-8352/© 2016 Elsevier Ltd. All rights reserved.

of total tardiness of all jobs which is calculated as Z}’Zl T;. This
problem can be denoted as F/prmu/ > T; (Pinedo, 2012).

PFSP with total tardiness objective is shown to be NP-hard even
for one machine (Du & Leung, 1990). There exist heuristic methods
as well as exact methods in the literature. Due to the complexity of
the problem, exact methods are employed only for small number
of jobs and machines. Branch-and-bound algorithms are proposed
for the single machine case (Della Croce, Tadei, Baracco, & Grosso,
1998) as well as the two machine case (Kim, 1993; Pan, Chen, &
Chao, 2002; Pan & Fan, 1997; Schaller, 2005; Sen, Dileepan, &
Gupta, 1989). Chung, Flynn, and Kirca (2006) was able to solve
problems up to 15 jobs and 2 machines, and 20 jobs and 8
machines. Most recently, Baker (2013) reports the results of a com-
parison with Chung et al’s branch-and-bound algorithm and a
commercial Excel add-in (RSP), where RSP was able to solve all
the generated problems having 16 jobs with 4 and 8 machines,
all of the 8-machine problems with 18 jobs except for one, and
all of the 4-machine problems with 22 jobs except for two; within
an hour of CPU time on a computer that has an Intel Core2 2.7 GHz
processor with 8 GB of RAM.

Heuristic algorithms construct solutions from scratch, based on
priority rules such as earliest due date (EDD), minimum slack
(SLACK), shortest processing times (SPT) and modified due date
(MDD) (Vallada, Ruiz, & Minella, 2008). Such heuristics can be
found in Gelders and Sambandam (1978), Ow (1985) and Raman
(1995). NEH method (Nawaz, Enscore, & Ham, 1983) is the best
performing heuristic for the makespan criterion. Kim (1993)


http://crossmark.crossref.org/dialog/?doi=10.1016/j.cie.2016.06.012&domain=pdf
http://dx.doi.org/10.1016/j.cie.2016.06.012
mailto:korhan.karabulut@yasar.edu.tr
http://dx.doi.org/10.1016/j.cie.2016.06.012
http://www.sciencedirect.com/science/journal/03608352
http://www.elsevier.com/locate/caie

K. Karabulut/Computers & Industrial Engineering 98 (2016) 300-307 301

provides an adapted version of the NEH heuristic for the total tar-
diness problem called NEH.qq Where jobs are initially sorted by
using earliest due date (EDD) rule, i.e., by their due dates, in an
increasing order. NEH.qq is also used as an initial solution for other
heuristic and metaheuristic algorithms. For example, NEHcqq is
used in Kim, Lim, and Park (1996) to generate the starting solution
for two improvement heuristics named ENS1 and ENS2 that use
insert and swap neighborhoods respectively. Most recently,
Viagas and Framinan (2015) introduced new heuristics based on
NEH,qq that can find 25% better results than the original NEHqqq.

Several metaheuristic methods have been used for total tardi-
ness minimization. Onwubolu and Mutingi (1999) proposed a
genetic algorithm (GA), Armentano and Ronconi (1999) used tabu
search, Hasija and Rajendran (2004) proposed a simulated anneal-
ing algorithm with local search and Onwubolu and Davendra
(2006) used a differential evolution algorithm.

Readers are referred to Vallada et al. (2008) for a detailed
review and comparative evaluation of numerous exact, heuristic
and metaheuristic methods for the PFSP with total tardiness objec-
tive. Vallada et al. (2008) also proposed a benchmark suite that is
used in this work, to be able to compare the algorithms on a com-
mon test set.

In most recent works, Vallada and Ruiz (2009) report the results
for parallel and serial execution of several cooperative metaheuris-
tics for both total tardiness and makespan criterion. Framinan and
Leisten (2008) use a variable iterated greedy algorithm where the
number of jobs that are removed from the current permutation is
varied from 1 to n — 1. Vallada and Ruiz (2010) present a GA with
path relinking, and Kellegoz, Toklu, and Wilson (2010) use an elite
guided steady-state GA.

Chen and Li (2013) use an integrated iterated local search (IILS)
that is based on ILS. M'Hallah (2014) presents an iterated local
search algorithm hybridized with a variable neighborhood descent
algorithm. Cura (2015) proposes a new evolutionary approach with
a new mating scheme designed for the problem that can achieve
better results as the size of the problem increases.

The IG algorithm presented by Ruiz and Stiitzle (2007) for the
PFSP is a simple and easy to implement, yet powerful and effective
metaheuristic. The algorithm has two phases: destruction and con-
struction. In the destruction phase, a number of randomly selected
jobs are removed from the current solution. In the construction
phase, each removed job is reinserted to all available positions
by using the NEH heuristic. A local search algorithm may also be
applied after these two phases. For diversification, Metropolis cri-
terion, which is also the selection mechanism in simulated anneal-
ing, is used as the acceptance rule.

Variable Neighborhood Search (VNS) (Mladenovic & Hansen,
1997) is another metaheuristic where a systematic change of dif-
ferent neighborhoods are applied to a solution at hand. Usually,
local search phase of VNS is costly for large search spaces. Reduced
VNS (RVNS) (Hansen & Mladenovic, 2001) is a simplified VNS in
which there is no local search step. In RVNS, random neighbor-
hoods of the new solution candidate are investigated for given
number of times and the incumbent solution replaces the current
best only if it is better. Variable Neighborhood Descent (VND)
(Hansen & Mladenovic, 2001) is another extension of VNS where
there is no shaking step and neighborhood change is made in a
deterministic way.

Random search is a simple metaheuristic and is easy to imple-
ment and can be adapted to different problems. Random search
starts from an initial solution and is based on adding a random vec-
tor to the current solution, replacing the current solution if the new
solution is better and repeating this procedure until the stopping
criterion is met. Although this scheme is simple, it is shown to
guarantee to find the global optimum by Baba (1981) and Solis
Francisco, Wets, and Roger (1981).

In the following sections, an IG algorithm that uses RLS, which is
a combination of random search and reduced VNS in the local
search phase for solving the PFSP with total tardiness minimization
criterion is presented. The proposed algorithm, called IG_RLS, uses
efficient implementation of speedups and provides the state-of-art
results by finding the new best-known solutions for 343 out of 540
instances for the problem instances proposed by Vallada et al.
(2008).

The rest of the paper is organized as follows: Section 2 gives the
details of the proposed algorithm. The computational results are
presented in Section 3. Conclusions are provided in Section 4.

2. The iterated greedy algorithm

The IG_RLS algorithm uses permutation representation for can-
didate solutions. The pseudocode of the algorithm is given in Fig. 1.

The initial solution is constructed using the NEH.qq heuristic.
NEH is considered as the best heuristic for makespan minimiza-
tion. NEH starts with sorting jobs by their total processing times
in decreasing order, taking the first two jobs and obtaining a partial
permutation that minimizes the partial makespan. Then, the
heuristic proceeds with inserting the remaining jobs into every
possible slot in the partial solution, considering jobs one by one
in the obtained order. The slot that minimizes the makespan is
selected for insertion of the current job. In NEH.qq heuristic, the
jobs are sorted by their due dates in an increasing order. Again,
as in the original NEH, after selecting the ordering of the first
two jobs, each possible slot is considered for all the remaining jobs
and the slot that minimizes the total tardiness is selected.

RLS local search is applied to the initial solution. Then, in a loop,
the current job sequence is destructed and constructed. The
destruction size (d) is set to 4 as found experimentally in Ruiz
and Stiitzle (2007). In the destruction phase, d randomly selected
jobs are removed from the current permutation. In the construction
phase, each removed job, in the order in which it was removed, is
inserted into all possible positions in the partial permutation. The
resulting partial permutation that minimizes total tardiness is
selected. The reinsertion procedure is computationally expensive,
especially for large instances, since all of the positions are consid-
ered. Li, Wang, and Wu (2009) describe a modified NEH procedure
for total flowtime minimization that could save up to 50% of the
time required for calculating the total flowtime. The main idea
behind the speedup mechanism is reusing the flowtime calcula-
tions for the unchanged part of the permutation after an insert or
swap operation and calculating the flowtime only for the changed
part of the permutation. A matrix of flowtimes for each job on each
machine has to be calculated for the initial permutation in order to

procedure IG_RLS
Ty < NEHeqq
TMpese < T < LocalSearch(m,)
d«<4
while(Not Termination)
1" « DestructionConstruction(m, d)
" « LocalSearch(m")
if f(n'") < f(n) then
Temn’
if f(m") < f(mpes) then
Tlhest < L
endif
else if random() < exp{—((f(n"") — f(w))/Temperature)} then
R
endif
end while
return Ty
end procedure

Fig. 1. The IG_RLS algorithm.



Download English Version:

https://daneshyari.com/en/article/1133330

Download Persian Version:

https://daneshyari.com/article/1133330

Daneshyari.com


https://daneshyari.com/en/article/1133330
https://daneshyari.com/article/1133330
https://daneshyari.com

