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a b s t r a c t

This paper deals with four single-machine scheduling problems (SMSPs) with a variable machine main-
tenance. The objectives of the four SMSPs are to minimize mean lateness, maximum tardiness, total flow
time and mean tardiness, respectively. These four SMSPs are important in the literature and in practice.
This study proposes an exact algorithm with the computational complexity Oðn2Þ for each of the four
SMSPs. In addition to the given jobs, the machine maintenance activity between two consecutive jobs
is optimally scheduled.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Single-machine scheduling problems (SMSPs) are quite com-
mon in manufacturing systems, and the related topics of schedul-
ing theories or real applications have been studied for several
decades (e.g., Billaut, Della Croce, & Grosso, 2015; Huang & Yang,
2013; Lin, Chou, & Ying, 2007; Lin & Ying, 2013; Lu, Lin, & Ying,
2012; Oron, Shabtay, & Steiner, 2015). Comprehensive surveys
and reviews of SMSPs have been conducted in the literature (e.g.,
Abdul-Razaq, Potts, & Van Wassenhove, 1990; Pinedo, 2012). In
the real world, machine maintenance is one of the critical factors
that can significantly affect job scheduling performance. Since
the 1990 s, scheduling problems resulting from machine mainte-
nance issues have received considerable attention. However, most
studies in the literature have assumed the two critical factors of
machine maintenance, i.e., starting time and duration, to be deter-
ministic and fixed (e.g., Epstein et al., 2012; Ma, Chu, & Zuo, 2010;
Mati, 2010; Moncel, Thiery, & Waserhole, 2014; Mor & Mosheiov,
2012).

Kubzin and Strusevich (2006) were among the first to introduce
the concept of variable machine maintenance to machine
scheduling problems. They considered two-machine scheduling
problems and treated the starting time and the duration of the
maintenance operation as decision variables. They showed the
resulting scheduling problems to be polynomially solvable and
proposed a fully polynomial-time approximation scheme and a fast

3/2-approximation algorithm. Ji, He, and Chen (2007) studied an
SMSP with periodic maintenance activities, the objective being to
find a schedule that minimizes the makespan, subject to periodic
maintenance and nonresumable jobs. They showed that there is
no polynomial-time approximation algorithm with a worst-case
ratio of less than 2 unless P = NP. Yang, Yang, and Cheng (2010)
showed that a single-machine due-window assignment and
scheduling problem with job-dependent aging effects and deterio-
rating maintenance can be optimally solved in Oðn4Þ time. In the
same year, Xu, Yin, and Li (2010) considered SMSPs and parallel-
machine scheduling problems, with a requirement that the dura-
tion of performing one maintenance activity is an increasing linear
function of the total processing time of all jobs. In their study, two
approximation approaches were developed to solve the scheduling
problems in order to minimize the makespan. Mosheiov and
Sidney (2010) considered an optional maintenance in SMSPs,
assuming the maintenance duration to be a non-decreasing func-
tion of its starting time. Their study showed that SMSPs which
minimize the makespan, flow time, maximum lateness, total earli-
ness, tardiness and due-date costs and number of tardy jobs are
polynomially solvable. Luo, Chen, and Zhang (2010) addressed
the SMSP and considered a maintenance activity with a starting
time that does not exceed its due date and with duration that is
a non-decreasing function of its starting time. In their study, two
approximation algorithms were developed to solve the problem
which minimizes the total weighted completion time.

Cheng, Hsu, and Yang (2011) investigated the unrelated
parallel-machine scheduling problem with deteriorating mainte-
nances which minimizes the total completion time or the total
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machine load. In this problem, each machine has at most one
maintenance activity, which can be performed at any time, and
the duration of each maintenance activity is assumed to increase
linearly with its starting time. Their study showed that both ver-
sions of the problem can be optimally solved in polynomial time.
Yang, Cheng, Yang, and Hsu (2012) proposed an efficient algorithm
to solve the unrelated parallel-machine scheduling problem with
aging effects and multi-maintenance activities simultaneously.
Their objective was to minimize the total machine load when the
maintenance frequencies on the machines are given. Cheng,
Yang, and Yang (2012) investigated an SMSP of the common due-
window assignment and scheduling of linear time-dependent
deteriorating jobs and a deteriorating maintenance activity in
order to simultaneously minimize the earliness, tardiness, due-
window starting time and due-window size costs. The authors pre-
sented polynomial-time solution algorithms for the problem and
some of its special cases. Yang (2012) studied SMSPs with multi-
maintenance activities and learning effects, assuming that the
duration of each maintenance activity depends on the running
time of the machine. The objectives of the two problems were to
determine the optimal maintenance frequencies, maintenance
positions and schedule of all jobs so as to minimize the makespan
and total completion time, respectively. The study further showed
the SMSPs addressed to be solvable in polynomial time.

Recently, Yin, Wu, Cheng, and Wu (2014) provided polynomial-
time solution algorithms for various versions of SMSPs with simul-
taneous consideration of the due-date assignment, generalized
position-dependent deteriorating jobs and deteriorating mainte-
nance activities. Their objective was to jointly determine the opti-
mal job sequence, maintenance frequency and maintenance
positions so as to minimize the cost of the due-date assignment,
the cost of discarding jobs that cannot be completed by their due
dates and the earliness of the scheduled jobs. Luo, Cheng, and Ji
(2015) followed by addressing four SMSPs, each having a mainte-
nance activity whose duration increases with its starting time.
They presented polynomial-time algorithms for the four problems
aimed at minimizing the makespan, sum of completion time, max-
imum lateness and number of tardy jobs, respectively. In particu-
lar, they showed that the algorithms found exact solutions based
on the dispatching rules of the shortest processing time (SPT)
and earliest due date (EDD) as categorized by Blackstone,
Phillips, and Hogg (1982). More recently, Yin, Xu, Cheng, Wu, and
Wang (2016) considered an SMSP with independent and simulta-
neously available jobs without preemption, where the machine
has a fixed maintenance activity. The authors proposed two
pseudo-polynomial dynamic programming algorithms and a fully
polynomial-time approximation scheme to minimize the total
amount of late work.

Along the lines of Luo et al. (2015), the aim in this research was
to investigate another four SMSPs with the objective of minimizing
mean lateness, maximum tardiness, total flow time and mean tar-
diness, respectively. These four SMSPs have received much atten-
tion in the literature (Cheng, Hsu, Huang, & Lee, 2011; Herr &
Goel, 2016; Huang, Yu, & Yang, 2013; Kacem & Chu, 2008; Lin,
Lu, & Ying, 2011; Mazdeh, Rostami, & Namaki, 2013; Xiong, Xing,
& Wang, 2015; Yin, Ye, & Zhang, 2014).

The steel strip production in a steel plant can be considered as a
practical example for the proposed SMSPs (Luo et al., 2015). During
the production process, steel slabs (jobs) must pass a re-heat
furnace (machine) before they are rolled into strips. The re-heat
furnace must be maintained, i.e., cleaned and fuels refilled, prior
to a given deadline to ensure that it functions normally. This action
can be regarded as a ‘‘variable maintenance activity” because the
duration of cleaning and refilling the furnace is a positive and
non-decreasing function of the total processing time of the steel
slabs that have been processed. For solving these SMSPs, in this

paper we propose an optimal algorithm with the computational
complexity Oðn2Þ for each of them.

The rest of this paper is organized as follows. The following sec-
tion defines the problems under consideration. Section 3 presents
the polynomial-time algorithms for solving the four SMSPs and
the respective numerical examples. Section 4 gives the conclusions
of this study.

2. Problem definition

Consider a sequencing problem that has a set J ¼ f1; . . . ;ng of n
independent jobs to be processed on a single-machine without
interruption. Each job j (j ¼ 1; . . . ;n) has a processing time, pj,
and a due date, dj. All jobs are simultaneously available for process-
ing at the beginning of the planning horizon. The machine is con-
tinuously available but must undertake one maintenance activity
during the planning horizon, where the starting time, s, of the
maintenance activity must be before a given deadline, sd, i.e.,
s 6 sd. The starting time, s, of the maintenance activity is a decision
variable which is determined by the scheduler, and the duration of
maintenance, l, is a positive and non-decreasing function of its
starting time, i.e., l ¼ f ðsÞ and f ðsbÞ P f ðsaÞ for all sb > sa. The aim
is to optimally determine the starting time of the maintenance
and the sequence of all jobs under various scheduling objectives.

Let Cj, rj, and Fj, j ¼ 1; . . . ;n, be the completion time, release
time and flow time for job j, respectively. The mean lateness is
denoted by L, and measured by the difference between the unequal
processing times and the due dates of the jobs. The mean tardiness
and maximum tardiness are denoted by T and Tmax, respectively,
and measured based on the parts of the processing times that
exceed the due dates of the jobs. Using the three-field classification
method of Graham, Lawler, Lenstra, and Kan (1979), the four
SMSPs concerned with minimizing the mean lateness, maximum
tardiness, total flow time and mean tardiness can be represented
as 1;VM jjL, 1;VM jjTmax, 1;VM jrj ¼ rjPjFj and 1;VM jdj ¼ djT ,
respectively, where VM denotes the variable maintenance. Note
that each problem considers the requirement sd <

Pn
j¼1pj, and to

ensure that the maintenance is not arranged after the last job
was finished, because that position results in optimal position of
maintenance activity, and makes the problems equivalent to the
ones without any maintenance activity. For the ease of illustrating
the scheduling processes, we further let J½i�, i ¼ 1; . . . ;n, be the job

at the ith processing position, and pi be the candidate schedule
with the maintenance activity arranged before the start time of
J½i�; that is, the maintenance activity executed at time zero when
i ¼ 1.

Let xij (i ¼ 1; . . . ;n; j ¼ 1; . . . ;n) be the binary variables. xij is
equal to 1 if job j is assigned to position i; otherwise, xij ¼ 0. Then,
the 1;VM jjL; 1;VM jjTmax; 1;VM jrj ¼ rjPjFj and 1;VM jdj ¼ djT prob-
lems can be formulated as mixed integer linear programming
(MILP) mathematical models, as presented in the following subsec-
tions, respectively.

2.1. MILP model of the 1;VM jjL problem

Minimize z
subject to

z P
Xn

k¼1

ðC ½k�ðpiÞ � d½k�Þ=n; i ¼ 1;2; . . . ;n; ð1Þ

C½k�ðpiÞ ¼
Xk

i¼1

Xn

j¼1

xijpj; 8k ¼ 1; . . . ; i� 1; ð2Þ
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