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Keshavarz and Khorram formulated a fuzzy bi-criteria transportation problem with fuzzy delivery time
and fuzzy profit of transportation, as two conflicting objectives (Keshavarz & Khorram, 2011). They used
the max-min criterion of Bellman and Zadeh to reformulate the presented fuzzy bi-criteria transporta-
tion problem as a single objective non-linear programming problem, then showed that the optimal solu-
tion of this non-linear programming can be found by solving a bi-level programming problem. Finally,
they proposed an algorithm based on the parametric linear programming for solving this bi-level prob-
lem. In this paper, a shortcoming of Keshavarz and Khorram'’s algorithm is pointed out and a revised algo-
rithm is proposed to solve the problem. In order to illustrate the performance of this algorithm, Keshavarz
and Khorram's example is used and its optimal solution is improved.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Keshavarz and Khorram (2011) introduced and formulated
a Fuzzy Bi-Criteria Transportation Problem (FBCTP), and refor-
mulated their presented FBCTP as a crisp single objective
non-linear programming problem, using the Bellman-Zadeh's
fuzzy max-min criterion (Bellman & Zadeh, 1970). They
found optimality conditions of solution and showed that
the optimal solution of this non-linear programming can be
obtained by solving a bi-level programming problem, which
its lower-level is a bi-objective problem. Finally they
proposed an algorithm, based on the parametric programming,
for solving this bi-level problem and designed a comparative
analysis to find the optimal solution of this non-linear
programming.

In this paper a shortcoming of Keshavarz and Khorram'’s
algorithm is pointed out and a revised algorithm is presented
to obviate this shortcoming; finally through their numerical
example, the applicability of this algorithm will be
demonstrated.

2. Keshavarz and Khorram’s FBCTP formulation

Keshavarz and Khorram (2011) formulated the following
FBCTP.
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where t; and pj; are fuzzy variables associated with fuzzy delivery
time &; = (o, ;) and fuzzy profit p; = (ay, by) on link (i,j), respec-
tively; their membership functions are defined by (2) and (3). x;,
as a decision variable, is the number of units shipped along link
(i,j) from origin i to destination j. S;>0,i=1,...,m, and
D;>0,j=1,...,n, denote units of a particular item (commodity)
are supplied by source node i, and units are required by destination
node j, respectively. Furthermore, assume that the problem is
balanced, i.e. >} ;S; = 3, D;.
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In order to solve the problem (1), Keshavarz and Khorram for-
mulated the total delivery time and total profit of transporting
commodities as the following fuzzy intervals, respectively.
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where X is the set of all feasible solutions of the

problem (1), o = mingexd iy 0Ly 0y, B = MaXeexd g ity ByXis
@ = Mineex Y 1" 371 X5, and b = maxye 31 Y7L byXi.

Keshavarz and Khorram applied the Bellman and Zadeh’s max-
min criterion to convert the FBCTP (1) to the following problem.

max( min, {i65).1(T00). 9y 7(P0) ©)

After some analytical and computational manipulation,
Keshavarz and Khorram (2011) proved that the problem (6) can
be transformed into the following bi-level programming problem.

max A
7
f( ky ) g(mX)= 7
xeX

where X C X is the set of all efficient solutions of the following bi-
objective problem, as the lower-level problem.
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Functions f(4,x) and g(/,x) in the upper-level problem (7) are

defined as follows:
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It’s obvious that the lower-level problem (8) can be considered as a
bi-objective parametric programming problem, with /. as a param-
eter. Keshavarz and Khorram (2011) attempted to find the solution
of the bi-level programming problem (7) by finding and comparing
the optimal solutions of two distinct bi-level programming prob-
lems, which upper-level problems of them are same as (7), but
the lower-level’s objective of the first one is minT(x, 1), and for
the latter is maxP(x, /). They used a parametric programming

approach to solve these problems and finally designed a compara-
tive analysis to find the solution of (7). Their proposed comparative
approach tests boundary values of some intervals that maybe con-
tain the optimal 4, and paid no attention to the interior values of
intervals. To address this shortcoming, in the next section, a revised
algorithm is designed and numerically improved the solution of
their illustrative example.

3. A revised algorithm

Keshavarz and Khorram considered the following bi-level pro-
gramming problems (Models (22) and (23) in Keshavarz &
Khorram, 2011).
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Let (27, %), (4, %;) and (/g, x;) be the optimal solutions of the models
(7), (11) and (12), respectively. It is obvious that x; and x; are effi-
cient solutions of the model (8), therefore (/f,x;) and (/;,%;) are
feasible solutions of the model (7), and so 2° > max{4, Z,}.

Keshavarz and Khorram’s proposed algorithm finds (7, %) and
(44:X;), by a parametric programming approach; final step of this
algorithm suggests the value max{/;, Z;} as the optimal value of
(7), but this is not true generally, in fact max{’;, /;} is a lower
bound for A*. In order to overcome this shortcoming, we formulate
the following problem.
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Constraints (13.b) and (13.c) are manipulated versions of f(4,x) < 0
and g(4,x) < 0, respectively. Referring to (9) and (10), we see that s,
and s, are slack variables associated with the constraints. It should
be noted that the problem (13) is a non-linear programming prob-
lem with 4,s1,s, and ¥ = (..., xy,...) as decision variables, but for a
fixed value of 2 this problem is a linear programming problem. Fur-
thermore, if X = (...,X;,...) is an arbitrary feasible solution of the

0 - Z: IZ) l%x’/ le ng,, a *) iS

model (1) then (4,s1,52,%) = < , e , = X

3), and so this model is always

a feasible solution of the model (1
feasible.

Following theorems show two important properties of the
model (13).

Theorem 1. Let / € [0,1] be a fixed value, if (s},s5,x*) is an optimal
solution of the model (13), then x* is an efficient solution for (8).
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