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a b s t r a c t

Knowing the real time of changes, called change-point, in a process is essential for quickly identifying and
removing special causes. Many change-point methods in statistical process control assume the distribu-
tion and the in-control parameters of the process known, however, they are rarely known accurately.
Small errors accompanied with estimated parameters may lead to unfavorable change-point estimates.
In this paper, a new method, called fuzzy shift change-point algorithm, which does not require the
knowledge of the distribution nor the parameter of the process, is proposed to detect change-points
for shifts in process mean. The fuzzy c-partition concept is embedded into change-point formulation in
which any possible collection of change-points is considered as a partitioning of data with a fuzzy mem-
bership. These memberships are then transferred into the pseudo memberships of observations belong-
ing to each individual cluster, so the fuzzy c-means clustering can be used to obtain the estimates for
shifts. Subsequently, the fuzzy c-means algorithm is used again to obtain new iterates of change-point
collection memberships by minimizing an objective function concerning the deviations between obser-
vations and the corresponding cluster means. The proposed algorithm is nonparametric and applicable to
normal and non-normal processes in both phase I and II. The performance of the proposed fuzzy shift
change-point algorithm is discussed in comparison with powerful statistical methods through extensive
simulation studies. The results demonstrate the superiority and usefulness of our proposed method.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Control charts are most widely used for process monitoring.
However, due to the potential delay in producing signals, control
charts do not disclose the real time of process changes, which is
essential for engineers to identify the special causes and in turn
hasten the implementation of appropriate corrective action. Hence,
detection for the time of changes, called change-point (CP), in a
process is important in quality control. Process monitoring usually
involves two phases of analyses. In a preliminary analysis called
phase I analysis, data are collected and analyzed retrospectively;
the work in phase I involves detecting the presence of CPs and esti-
mating the in-control process parameters. In phase II, the in-
control process parameters are assumed accurately estimated or
known. Hence, much of the work in CP detection has focused on

‘‘known parameters” problems, however, the true values are rarely
known in practice.

There have been many researches in developing CP methods for
different quality characteristics. The likelihood approach has been
adopted most often in CP estimation such as Eyvazian, Noorossana,
Saghaei, and Amiri (2011), Shams, Ajorlou, and Yang (2013), Niaki
and Khedmati (2013) and Niaki and Khedmati (2014), Bae, Mun,
and Kim (2013), and Dogu (2014). Moreover, a CP framework for
detecting distributional changes in a normal process sequentially
were first introduced by Hawkins, Qiu, and Kang (2003) and it
had been extended in various ways by Ross, Adams, Tasoulis, and
Hand (2011) and Ross and Adams (2012). These CP detection
methods are likelihood based approaches which require knowing
the distribution of the process. Furthermore, a likelihood estimator
is only applicable to the processes following the distribution which
is based on, for example, a likelihood estimator for normal pro-
cesses is not applicable for Poisson processes. Therefore, nonpara-
metric methods for CP detection were considered by some
researchers such as Zhou, Zou, Zhang, and Wang (2009), Huang,
Kong, and Huang (2014), and Sharkey and Killick (2014). More
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recently, artificial neural network was applied to CP detection, for
instance, Ghiasabadi, Noorossana, and Saghaei (2013), Movaffagh
and Amiri (2013), Amiri, Niaki, and Moghadam (2014).

On the other hand, locating CPs in a process is similar to parti-
tioning data into clusters of similar individuals, hence, clustering
techniques have also been employed to detect CPs in some studies
such as Ghazanfari, Alaeddini, Niaki, and Aryanezhad (2008),
Harnish, Nelson, and Runger (2009), and Shams et al. (2013). Most
clustering researches utilized hard clustering methods in statistics
which restrict each data point belonging to exactly one cluster.
However, there are usually less crisp definite boundaries between
clusters in real datasets so that fuzzy partitioning which allows
data points belonging to more than one cluster is generally better
suited in real applications. Fuzzy logic is a natural way to deal with
the vagueness of data (Zadeh, 2008). In particular, fuzzy clustering
has been widely studied and applied in a variety of substantive
areas (see Bezdek, 1981; Hoppner, Klawonn, Kruse, & Runkler,
1999; Yang, 1993). Fuzzy control charts based on fuzzy set theory
are well-documented in literature such as Faraz and Shapiro
(2010), Wang, Li, and Yasuda (2014), and Sentürk, Erginel, Kaya,
and Kahraman (2014), however, as we know, there was less
research in use of fuzzy clustering methods for CP detection.
Although Alaeddini, Ghazanfari, and Aminnayeri (2009) mentioned
using a revised fuzzy c-means and a revised entropy clustering
method in detecting a step change, however, the performances of
two methods in their simulation are not good, even though they
did not explain how the modifications were made. Alaeddini
et al. (2009), Zarandi and Alaeddini (2010), Kazemi, Bazargan,
and Yaghoobi (2014) used a hybrid fuzzy-statistical clustering
method to detect a CP of normal processes in phase II. In carrying
out the hybrid fuzzy-statistical clustering algorithm, in-control
process parameters were assumed known, but they are rarely
known accurately. Although the usage of their approach can be
extended to phase I problems, its performance was affected seri-
ously by the variability of the estimates of parameters and it can-
not be used for detecting multiple CPs.

In this paper, we embed fuzzy clustering with fuzzy c-partition
into a CP framework to detect the time of shifts in mean, and
simultaneously produce the estimates of shifts in different seg-
ments in which multiple CPs are allowed. The distribution of the
process is not needed to know. Furthermore, the proposed method
does not require the true values of in-control process parameters
nor their estimates obtained in a phase I study, and it is applicable
to both phases. Besides, multiple shifts may occur in a phase I pro-
cess, but the control charts fail to detect the presence of any shifts
(see Sullivan, 2002). Although a method for detecting a single CP
may be employed to detect multiple CPs through binary segmenta-
tion, Hawkins (2001) pointed out ‘‘the hierarchic binary splitting,
though fast, usually fails to give the optimum splits if there are
two or more of them”. Instead of detecting multiple CPs one at a
time, the proposed method can be used for detecting multiple
CPs simultaneously in a process.

The remainder of this paper is organized as follows. The fuzzy
c-means clustering algorithm is reviewed in Section 2. Then, the
fuzzy shift change-point algorithm is proposed in Section 3. The
effectiveness of the proposed algorithm is examined through
extensive simulation with numerical data and real datasets in
Section 4. Finally, conclusions are stated in Section 5.

2. Fuzzy c-means clustering and X charts

Let X ¼ fx1;x2; . . . ;xng be a given data set in a p-dimensional
real space Rp. We would like to partition the dataset X into c sub-
sets that can well represent the data structure of X. The partition of

cclusters can be described by a c � n partition matrix
U ¼ ½u1;u2; . . . ;uc�T ¼ ½lij�c�n

where each element lij of U repre-
sents the membership of xj belonging to the ith cluster. In general,
there are three kinds of partition matrices used in clustering: (1)
The hard c-partitions UH with lij 2 f0;1g for all i and j andPc

i¼1lij ¼ 1 for each j; (2) The fuzzy c-partitions UF with

lij 2 ½0;1� for all i and j and
Pc

i¼1lij ¼ 1 for each j; and (3) The pos-
sibilistic c-memberships UP with lij 2 ½0;1� for all i and j andPc

i¼1lij > 0 for each j. The best-known clustering algorithm with
hard c-partitions UH is k-means (or called hard c-means). The fuzzy
c-means (FCM) clustering algorithm with fuzzy c-partitions UF is a
well-known fuzzy extension of k-means.

The FCM is an iterative algorithm by using the necessary condi-
tions for minimizing the following objective function, JFCM:

JFCMðU;AÞ ¼
Xc

i¼1

Xn

j¼1

lm
ij d

2
ij; ð1Þ

where the weighting exponent m > 1 is a fuzziness index; lij 2 UF

are fuzzy c-partitions; A ¼ fa1; . . . ;acg over the real space Rp is
the set of c cluster centers, and dij is a dissimilarity measure where

dij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2ðxj; aiÞ

q
¼ xj � ai

�� �� is the Euclidean distance between xj and

ai. Note that other types of dissimilarity dðxj;aiÞ may be used to
improve the usage and effectiveness of FCM. The updated equations
for minimizing JFCM are as follows (see Bezdek, 1981; Yang, 1993):

lij ¼
ðd2

ijÞ
�1=ðm�1Þ

Pc
k¼1ðd2

kjÞ
�1=ðm�1Þ ; i ¼ 1; . . . ; c; j ¼ 1; . . . ;n: ð2Þ

ai ¼
Pn

j¼1lm
ij xjPn

j¼1lm
ij

; i ¼ 1; . . . ; c: ð3Þ

3. Fuzzy shift change-point algorithm

Let fx1; x2; . . . ; xTg be a sequence of process readings. Assume
that c � 1 abrupt changes occur at unknown time points,
fs1; s2; . . . ; sc�1g with 1 6 s1 < � � � < sc�1 6 T � 1. Define s0 ¼ 0
and sc ¼ T. The work here focuses on detecting the time of shifts
in mean only, i.e., ai – aj, for 1 6 i– j 6 c but r2

i ¼ r2, for all
1 6 i 6 c. Since changes can occur randomly among the time
points, f1; . . . ; T � 1g, we may consider each combination of c � 1
points drawn from f1; . . . ; T � 1g, as a CP combination with a fuzzy
membership, say a. By transferring these memberships into the
pseudo memberships of data points belonging to each cluster,
respectively, we then use the FCM clustering twice to obtain the
estimates for the means of the c clusters and the new iterates of
CP memberships respectively. Finally, the optimal CPs and the esti-
mates for the means of c segments can be derived by repeating
these two procedures. In the following, we first consider one-CP
models and subsequently multiple-CP models.

3.1. Fuzzy shift change-point algorithm for one-change-point models

Assume that the successive process readings fx1; x2; . . . ;
xs; . . . ; xTg follows a distribution (for instance, normal) till time s,
after s, the mean of the distribution shifts but the variance remains
unchanged. Obviously, s 2 1; . . . ; T � 1f g. From the viewpoint of
probability, suppose that P s ¼ ið Þ ¼ ai; s 2 1; . . . ; T � 1f g withPT�1

i¼1 ai ¼ 1;0 6 ai 6 1, then the probability of any point
xj; j ¼ 1; . . . ; T � 1, belonging to the first group can be calculated
as follows:
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