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a b s t r a c t

This paper presents a dynamic opportunistic condition-based maintenance strategy for multi-component
systems. The strategy is based on real-time predictions of the remaining useful life under the simultane-
ous consideration of economic and stochastic dependence. First, the effect of a component’s degradation
level on the remaining useful life of other components is considered. The remaining useful life of compo-
nents that have a stochastic dependence on one another is predicted using stochastic filtering theory.
Given the condition monitoring history data, we model the effect of a component’s degradation level
on the remaining useful life of other components. And a penalty cost evaluates the additional cost of
shifting the maintenance time. This allows us to determine the optimal trade-off between reducing the
remaining useful life of some components and decreasing the set-up cost of maintenance. An optimiza-
tion model is then established by choosing the dynamic opportunistic maintenance zone and optimal
group structure that minimizes the long-term average maintenance cost of the system. A numerical
example including three multi-component systems is presented. The results show that our proposed
method maximizes production efficiency on the premise of ensuring system reliability, and reduces
the system operation and maintenance costs.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Maintenance activities play a major role in improving the avail-
ability, reliability, and security of industrial systems, and can also
reduce their lifecycle costs. Condition-based maintenance (CBM)
decisions are scheduled according to the condition of single or
multiple components (Ahmad & Kamaruddin, 2012; Jardine, Lin,
& Banjevic, 2006). CBM has been extensively studied and widely
applied, such as in enabling real-time sensor information to be
received from a component’s degraded state (Zhao, Tian, & Zeng,
2013). Another efficient and systematic approach for evaluating
the reliability of a system in its actual operating condition is Prog-
nostics and Health Management (PHM), which predicts the pro-
gression of any failures and mitigates operating risks via
management actions. PHM gives advance warning of impending
system failures, thereby assisting maintenance decisions and

preventive actions (Le Son, Fouladirad, Barros, Levrat, & Iung,
2013; Si, Wang, Chen, Hu, & Zhou, 2013).

The estimation of remaining useful life (RUL) is a key compo-
nent of PHM and CBM (Si, Wang, Hu, & Zhou, 2011). Studies on
RUL have mainly focused on prediction models. Most existing
prediction models can be divided into three main categories:
physics-based methods (Zhao et al., 2013), models based on expert
knowledge (Biagetti & Sciubba, 2004; Ma, Chen, & Xu, 2006), and
statistical data-driven methods (Si et al., 2011, Si, Wang, Hu, &
Zhou, 2014; Vališ, Žák, & Pokora, 2015). Among these RUL predic-
tion methods, we focus on statistical data-driven approaches based
on stochastic filtering. Methods based on stochastic filtering are
more suitable for CM data, and estimate the RUL by fitting the
available data under probabilistic and mathematical properties,
without relying on any physics or engineering principles. By apply-
ing statistical analysis to CM data, the probability density function
(PDF) of RUL is derived based on Bayesian theory, and no critical
failure threshold is required. This is one of the most appealing fea-
tures of this approach, because the failure threshold is difficult to
determine (Si et al., 2013).

When the prediction of RUL and preventive maintenance are
considered, most models mentioned above focus only on the single
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component system (Carr &Wang, 2011; Son, Zhang, Sankavaram, &
Zhou, 2015) or independent multi-component system (Liu, Xu, Xie,
& Kuo, 2014). However, large-scale complex systems consist of
multiple components that are structurally or stochastically depen-
dent upon one another. The optimization of a single component
does not ensure optimal performance in the entire system. Interac-
tions between these components cannot be neglected, and should
be taken into account in prognostics and maintenance decisions.
The problem of appropriate maintenance scheduling in multi-
component systems is difficult to analyze. Nonetheless, these
dependencies offer the possibility of jointly maintaining multiple
components, and multi-component maintenance policies can
reduce downtime losses and decrease costs (Gustavsson,
Patriksson, Strömberg, Wojciechowski, & Önnheim, 2014;
Nakagawa & Mizutani, 2009).

An optimal multi-component maintenance strategy considers
systems of several interdependent components. The dependencies
between multiple components can be classified as economic
dependence, stochastic dependence, or structural dependence
(Dekker, Wildeman, & van der Duyn Schouten, 1997). Many main-
tenance strategies for multi-component systems focus solely on
the economic dependency between components, as it is simpler
to describe these relationships (Bouvard, Artus, Berenguer, &
Cocquempot, 2011; Koochaki, Bokhorst, Wortmann, &
Klingenberg, 2012; Laggoune, Chateauneuf, & Aissani, 2010).
Huynh, Barros, and Berenguer (2015) introduces a multi-level
decision-making approach that combines maintenance decisions
at the system level and the component level considered the eco-
nomic dependence and structural dependence. However, many
multi-component systems have a degree of stochastic dependence.
For such systems, the assumption that components degrade inde-
pendently is inappropriate (Bian & Gebraeel, 2014). Existing mod-
els consider the effect that a component’s failure has on the
remaining functioning components with stochastic dependence
(Kvam & Pena, 2005; Nicolai & Dekker, 2008; Scarf & Deara,
2003). Li, Coit, and Elsayed (2011) presented a stochastic depen-
dence model for multi-component systems. The stochastic depen-
dence among component lifetimes was characterized by correlated
multivariate lifetime distributions, the parameters of which vary as
components fail. Carr and Wang (2010) reported a theoretical
Bayesian model for RUL prediction that considers the failure of
one component to induce various degradation states in other

components. Zhang, Wu, Li, and Lee (2015) studies maintenance
policies for multi-component systems in which failure interactions
and opportunistic maintenance (OM) involve. In reality, the failure
rates are unobservable, and thus cannot be used to understand the
underlying physics-of-failure. In contrast, we are more concerned
with modeling interactions at the level of degradation processes:
the proposed approach characterizes the real-time evolution of
this degradation by modeling the associated degradation signals
prior to failure.

Stochastic dependence models that address component interac-
tions in terms of system degradation states have also been studied.
These include Markov models (Lisnianski & Levitin, 2003) and
semi-Markov models (Chryssaphinou, Limnios, & Malefaki, 2011)
in which the transition rate of each component depends on the
state of the system. Nonetheless, one of the most important limita-
tions of such models is that they do not investigate the physics-of-
failure at the component level. Thus, they cannot be used to cap-
ture component interactions. Interactions between components
and the overall system are determined by a pre-specified structure
function, which does not necessarily consider the degradation or
failure effect of one component on another. Certain qualitative
models are limited to relating these interactions from a logical
standpoint, and do not provide quantifiable estimates of the inter-
action or lifetime. In contrast, our proposed methodology can be
used to predict the RUL of components by leveraging real-time
CM data.

The prediction of RUL provides information that facilitates
maintenance decisions. However, the development of mainte-
nance strategies remains a core aim (Tang, Makis, Jafari, & Yu,
2015). Common maintenance planning approaches for multi-
component systems include block replacement policies, grouping
maintenance policies, and OM policies (Nowakowski & Werbińka,
2009). Different maintenance decision models have been estab-
lished based on these three basic maintenance strategies. These
models mainly discuss the determination of a satisfactory mainte-
nance schedule that applies the relevant policy under different
system structures, costs, maintenance methods, and optimization
goals. Early research into block replacement maintenance policies
focused on the periodic maintenance of different components to
achieve the optimal system maintenance time (Scarf & Deara,
2003). The popularity of grouping maintenance policies and OM
policies has increased with the development of CBM. These

Acronyms
CBM condition based maintenance
CM condition monitored
RUL remaining useful life
OM opportunistic maintenance
PDF probability density function
PSO particle swarm optimization
AIC Akaike information criterion
ML maximum likelihood

Notation
ti time of the ith monitoring point
zðkÞi monitoring information of component k at ti

f ðkÞi t sðkÞi

��� ; sðjÞi ; j 2 Dk

� �
PDF of component k at time ti

TðkÞ
i RUL of component k at time ti

Cp cost of preventive maintenance
Cf cost of failure replacement
Ch penalty cost

S fixed set-up cost
t�R optimal replacement date of single component
Nw time window

CðgÞ
min minimum average cost rates of the single component g

SðkÞi CM history of preventive maintenance

f ðkÞ0 ðtÞ initial PDF of a new component

gðkÞðzðkÞjt; sðjÞÞ degradation status information PDF of component
k

gðjÞðzðjÞÞ degradation status information PDF of component j
qi cost saving of dynamic OM based on CM information

until ti
qT saved cost preventive OM strategy over a long-term per-

iod T
Q average saved cost rate

DtðgÞ�0 optimal OM zone threshold of component g
QT average saving cost over the long-term period T
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