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Infrastructure systems, including transportation, telecommunications, water supply, and electric power
networks, are faced with growing number of disruptions such as natural disasters, malevolent attacks,
human-made accidents, and common failures, due to their age, condition, and interdependence with
other infrastructures. Risk planners, previously concerned with protection and prevention, are now more
interested in the ability of such infrastructures to withstand and recover from disruptions in the form of
resilience building strategies. This paper offers a means to quantify resilience as a function of absorptive,

Il:z ;’lvi‘;;dcse: adaptive, and restorative capacities with Bayesian networks. A popular tool to structure relationships
Bayesian network among several variables, the Bayesian network model allows for the analysis of different resilience build-
Transportation ing strategies through forward and backward propagation. The use of Bayesian networks to quantify resi-

lience is demonstrated with the example of an inland waterway port, an important component in the

intermodal transportation network.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Infrastructure systems are faced with growing number of dis-
ruptions due to their age, condition, and interdependence with
other infrastructures. These systems are subject to common cause
failure, but also natural disasters that are becoming more frequent
and more impactful (e.g., Hurricane Sandy in 2012, the Japanese
earthquake and tsunami of 2011, the Haiti earthquake in 2010,
Hurricane Katrina in 2005).

The resilience of infrastructure systems in the face of the variety
of disruptive events and resulting consequence has become an
increasingly important topic among planners. Infrastructure sys-
tems must be designed in a way so that they are resistant enough
to withstand and recover quickly from disruptions. Previously, the
emphasis of preparedness planning dealt with protection and pre-
vention of disruptive events. Such strategies may not be sufficient
to withstand disruptive events, particularly for uncharacteristically
devastating events, because it is almost impossible in practice to
harden infrastructure systems against all types of disruptive
events. Accordingly, the concept of resilience emerged to supple-
ment a mitigation-focused philosophy, recognizing the significance
and need for timely response and recovery from disruptions.
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Activities that account for response and recovery are commonly
referred to as post-disruption or contingency strategies. A suitable
resilience strategy for a critical infrastructure might be different
from one to another. For example, rerouting alternative is a suit-
able resilience strategy for transportation and communication net-
works when the connectivity and redundancy degree of networks
are high, however having a high degree of connectivity is not suit-
able for power grid systems where the cascading failures are
common.

In this paper, we propose the novel quantification of resilience
with Bayesian networks, a technique that has found popularity in
such fields as reliability engineering but with little application in
resilience modeling. Bayesian networks can model the causal rela-
tionships among various aspects of resilience and are especially
useful when varying levels of data describing those relationships
are known (e.g., data sets describing commodity flows through a
port, expert elicitation of the effects of a natural hazard on the con-
dition of dock-specific equipment). Different disruptive scenarios,
as well as different resilience building strategies, can be simulated,
and a sensitivity analysis of parameters can be performed for a
robust analysis.

To illustrate the proposed quantification approach, we use an
inland waterway port case study. Inland ports play a vital role in
intermodal transportation networks by maintaining the flow of
commodities among industries and regions. The disruption of ports
can have significant adverse impacts on supply and demand, ulti-
mately affecting productivity. U.S. inland waterway infrastructure
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was recently given the grade of D- (American Society of Civil
Engineers, 2013), with locks and dams increasingly vulnerable to
common cause failure and natural disasters that could exploit their
state of repair. Port closures could result in cargo congestion at the
gates, vessel queuing, backlogs at warehousing transloading facili-
ties, and manufacturing production stoppages (National
Cooperative Freight Research Program (NCFRP), 2014). For exam-
ple, the impact of a 10-day shutdown of West Coast port could
be approximately $2.1 billion per day on the overall economy
(West coast port congestion could cost retailers $ 36.9 billion in
the next 24 months, 2015). Closures to inland waterway ports
can have significant regional impacts (Pant, Barker, & Landers,
2015; Pant, Barker, Ramirez-Marquez, & Rocco, 2014).

The remainder of the paper is as follows. Section 2 provides
background literature on resilience modeling and on the construc-
tion of Bayesian networks. Section 3 describes the contributors of
port resilience used in this paper, and Section 4 provides the devel-
opment and analysis of the Bayesian network for port resilience.
Concluding remarks are given in Section 5.

2. Literature review

This section offers some background on the study of resilience,
as well as the use of Bayesian networks, which will be used to
quantify resilience in this paper.

2.1. Quantifying resilience

Despite the extensive research recently on the subject of resili-
ence, most work in infrastructure systems deal with system vul-
nerability (withstanding a disruption) rather than system
resilience (withstanding then recovering) (Eusgeld, Kroger,
Sansavini, Schlapfer, & Zio, 2009; Johansson & Hassel, 2010;
Johansson, Hassel, & Zio, 2013; Wang, Hong, & Chen, 2010). Various
general metrics have been defined to measure the resilience that is
applicable to the infrastructure systems (Carvalho, Barroso,
Machado, Azevedo, & Cruz-Machado, 2012; Chang & Shinozuka,
2004; Hashimoto, 1982; Jain & Bhunya, 2010; Losada, Scaparra, &
O’Hanley, 2012; Muller, 2012; Vugrin, Baca, Mitchell, & Stamber,
2014). Hosseini, Barker, and Ramirez-Marquez (2016) classified
the literature related to the resilience measurement approaches
into two groups: qualitative based approaches and quantitative
based approaches. Qualitative approaches were further divided into
conceptual frameworks and semi-qualitative indices, while quanti-
tative approaches were further divided into general probabilistic
and deterministic measures and structural-based models (e.g.,
optimization, simulation, fuzzy logic models).

Several works have focused on transportation and logistics sys-
tems, in particular. Omer, Mostashari, and Lindemann (2014)
introduced a metric for infrastructure system resilience, measuring
the closeness centrality of network before and after a disruptive
event. Soni, Jain, and Kumar (2014) proposed a deterministic mod-
eling approach based on graph theory to measure supply chain
resilience. Their proposed approach is able to capture dynamic nat-
ure of environment for handling disruptive events in supply chains.
Carvalho et al. (2012) applied discrete event simulation technique
to assess alternative supply chain scenarios for improving supply
chain resilience. The authors considered two performance mea-
sures including lead time ration and total cost for comparing the
merit of alternatives. Rajesh and Ravi (2015) addressed the
enablers of supply chain risk mitigation and then proposed Grey
theory and DEMATEL approaches to explore cause/effect among
the enablers of supply chain risk mitigation. Faturechi,
Levenberg, and Miller-Hooks (2014) proposed a mathematical
model to evaluate and optimize airport resilience, focusing on

the quick restoration of post-event take-off and landing capacities
to the level of pre-disruption capacities. Vugrin, Turnquist, and
Brown (2014) proposed a multi-objective optimization model for
transportation network recovery, designed as a lower-level prob-
lem that involves solving a regular network flow problem and an
upper-level problem that explores the optimal recovery sequences
and modes. The objective of the optimization model presented by
Vugrin et al. (2014) is to maximize the resilience of disrupted
transportation networks. Their proposed model was applied to
two networks: a maximum flow network and a complex congested
traffic flow network for recovery task sequencing. Khaled, Jin,
Clarke, and Hoque (2015) proposed a mixed integer nonlinear pro-
gramming problem and heuristic solution approach for evaluating
critical railroad infrastructures to maximize rail network resili-
ence. Youn, Hu, and Wang (2011) proposed a metric for measuring
the resilience of engineered systems, calculating the degree of pas-
sive survival rate (i.e., reliability) plus proactive survival rate (i.e.,
restoration), as represented by Eq. (1)

Resilience () £ Reliability (R) + Restoration (p) (1)

Restoration in Eq. (1) is defined as the ability of an engineered
system to restore by detecting, predicting, and mitigating the
effects of disruptive events. Restoration is modeled as the joint
probability (1 — R) of system failure, the probability (Ap) of cor-
rectly diagnosing the failure event, probability (Ap) of correctly
predicting the failure event, and the probability (k) of successfully
mitigating the event. By considering restoration elements, the resi-
lience formula in Eq. (1) can be rewritten with Eq. (2).

Resilience (P) 2 R+ k x Ap x Ap x (1 —R) (2)

Youn et al. Youn et al. (2011) also proposed an optimization
model to minimize system lifecycle cost, subject to system’s resili-
ence constraint. Both lifecycle cost and system resilience are mod-
eled as functions of target component reliability, target component
redundancy, and target component prognostics and health man-
agement (PHM) efficiency.

Hosseini, Yodo, and Wang, (2014) proposed a generic Bayesian
network approach for quantifying the resilience of an electric
motor supply chain, where the resilience of supply chain is mea-
sured by the metric proposed by Youn et al. (2011). Reyes Levalle
and Nof (2015a), Reyes Levalle and Nof (2015b) proposed an
approach based on fault tolerance by teaming principle of collabo-
rative control theory for design and operation of resilient supply
networks. Their proposed approach is capable of achieving higher
fault tolerance with fewer resources in the case of disruptions.

Note that many of the previous approaches to quantifying resi-
lience focus solely on modeling system reliability, whereas more
recent methods also account for system recovery. Such a trend
aligns with the comprehensive definition of infrastructure resili-
ence presented by the National Infrastructure Advisory Council
(NIAC), (2009), which defines the resilience as the ability to pre-
dict, adapt and/or quickly recover from a disruptive event. Given
this definition, we are primarily motivated by the time-
dependent resilience measure proposed by Henry and Ramirez-
Marquez (2012) which represents resilience metric at time ¢,
fI(t), as ratio of recovery to loss at time t. The performance of a
system over time, ¢(t), is generally represented in Fig. 1. Three
transition states have been defined in which a system can operate:
(i) So, the baseline or steady state when system operates under nor-
mal conditions until disruptive event e/ occurs at time t, (ii) Sy, the
disrupted state at time t; due to disruptive event e/ disrupting the
performance of system, and (iii) Sy, the recovered state at time ¢y,
resulting from recovery activities triggered at time t;.

Depicted in Fig. 1, the system operates normally with service
function of ¢(to) (e.g., inventory rate, capacity level) within time
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