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a b s t r a c t

We consider job selection problems in two-stage flow shops, open shops and job shops. The objective is to
select the best job subset with a given cardinality to minimize either the total job completion time or the
maximum job completion time (makespan). An Oðn2Þ algorithm is available for the two-stage flow shop
with ordered machines and the minimum makespan objective; we utilize this algorithm to solve the
same problem for the total job completion time objective. We then propose an Oðn2Þ algorithm for the
two-machine open shop job selection problem with ordered machines and the minimum makespan
objective. We also consider a two-machine job shop in which the first operation of each job is no longer
than the second one. We show that the job selection problem in this job shop with the minimum
makespan objective is ordinary NP-hard and that the problem becomes solvable in Oðn log nÞ time with
the additional assumption of ordered jobs.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Job selection problems in two-stage shops are concerned with
the selection of the best job subset with a given cardinality to min-
imize a scheduling objective such as the total job completion time
or the maximum job completion time (makespan) among others.
Specifically, there is a set of n jobs, j ¼ 1; . . . ;n all of them available
at time zero; job j must be processed non-preemptively on two
stages (machines) M1; M2 with known positive processing times
aj; bj on M1; M2 respectively. Each machine can process at most
one job at a time and the two operations of each job cannot be pro-
cessed concurrently. In a flow shop, all jobs must follow the
M1 ! M2 processing sequence. In a job shop, a subset of the jobs
must follow the M1 ! M2 processing sequence while the remain-
ing jobs must follow the M2 ! M1 processing sequence. Each job
is allowed to have only one operation on each machine.
Therefore our two-stage job shop is actually a bi-directional
two-stage flow shop. Finally, in an open shop, the two operations
of each job can be processed in any order.

The objective is to select the best job subset with a given cardi-
nality k for each k ¼ 1; . . . ;n to minimize either the total job com-
pletion time

P
Cj or the makespan Cmax. It is assumed that all jobs

are equally important. If this is not the case, then a job-specific
rejection cost should be assigned to each non-processed job and

the job selection problem becomes the corresponding scheduling
problem with job rejection. The literature on shop scheduling
problems with job rejection is reviewed by Shabtay, Gaspar, and
Kaspi (2013). It is mentioned there that most two-stage shop prob-
lems with job rejection are NP-hard even with equal job rejection
costs (see Choi & Chung, 2011; Shabtay & Gaspar, 2012 & T’kindt &
Della Croce, 2012 among others). Furthermore, most of the papers
on two-stage shops with job rejection utilize composite objective
functions in which the total job rejection cost is added to the cost
of the scheduling objective for the non-rejected jobs. In contrast,
we consider all k ¼ 1; . . . ;n optimal solutions in this paper; this
is facilitated by the observation that all jobs are viewed as equally
important in the job selection problem and therefore the number
of optimal solutions is equal to n (or equal to nþ 1 if the solutions
with either

P
Cj ¼ 0 or Cmax ¼ 0 are also considered).

We conclude our introduction by reviewing some related liter-
ature. T’kindt, Della Croce, and Bouquard (2007) analyzed the
two-machine flow shop F2=di ¼ d=ðd;nTÞ problem of simultane-
ously determining a minimal common job due date d and the min-
imum number of tardy jobs nT . For any given number of tardy jobs
nT (or for any given number of k ¼ n� nT non-tardy jobs), the
F2=di ¼ d=ðd;nTÞ problem is equivalent to the F2=k jobs=Cmax prob-
lem in which the objective is to select the best job subset among all
subsets with cardinality k to minimize the makespan. Della Croce,
Koulamas, and T’kindt (2014) utilized a constraint generation
approach to solve the F2=k jobs=Cmax problem.

The minimum number of tardy jobs F2=di ¼ d=nT problem in
which the common due date d is given is reducible to the
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F2=di ¼ d=ðd;nTÞ problem in polynomial time. T’kindt et al. (2007)
showed that the F2=k jobs=Cmax problem is ordinary NP-hard by
utilizing the fact that the F2=di ¼ d=nT problem is ordinary
NP-hard.

The complexity of the F2=k jobs=Cmax problem motivated
Panwalkar and Koulamas (2012) to consider the F2=k jobs=Cmax

problem with a maximal machine. If aj P bj ðbj P ajÞ for all
j ¼ 1; . . . ;n, then the first (second) machine is maximal and the
problem has ordered machines. Panwalkar and Koulamas (2012)
showed that the F2=k jobs; M2 �max =Cmax problem is solvable
in Oðn2Þ time by implementing their PK algorithm; the symbol
M2 �max indicates that M2 is maximal. Because of the symmetry
of flow shop problems with the makespan objective, the
F2=k jobs; M1 �max =Cmax problem is also solvable in Oðn2Þ time.
In this paper, we utilize the PK algorithm to solve the
F2=k jobs; M1 �max

P
Cj

�
job selection problem in Oðn2Þ time.

We then turn our attention to the open shop
O2=k jobs; M1 �max =Cmax (and its symmetric O2=k jobs; M2�
max =Cmax problem) and show that the O2=k jobs; M1� max =Cmax

problem can be solved in OðnÞ time for each k ¼ 1; . . . ;n value.
Finally, we consider the two-stage job shop J2=k jobs; o1

< o2=Cmax problem; the symbol o1 < o2 indicates that the first
operation of each job is no longer than the second one. In this prob-
lem, there are two groups of jobs, G1 and G2 respectively. If j 2 G1,
then the routing of j is M1 ! M2 and aj 6 bj. Similarly, if j 2 G2,
then the routing of j is M2 ! M1 and bj 6 aj.

We show that the J2=k jobs; o1 < o2=Cmax problem is ordinary
NP-hard. We also show that the J2=k jobs; o1 < o2=Cmax problem
becomes solvable in Oðn log nÞ time if we impose the additional
condition of ordered jobs, according to which if ai 6 aj for any
two jobs i; j, then bi 6 bj as well 8fi; jg 2 f1; . . . ;ng; i – j. For more
on the definitions of ordered machines and ordered jobs, the reader
is referred to Panwalkar, Smith, and Koulamas (2013).

The rest of the paper is organized as follows. In Section 2, we
show that the F2=k jobs; M1 �max

P
Cj

�
problem can be solved

in Oðn2Þ time. In Section 3, we present an Oðn2Þ algorithm for the
O2=k jobs; M1 �max =Cmax problem. A numerical example illustrat-
ing the implementation of the proposed algorithms is presented in
Appendix A. In Section 4, we show that the J2=k jobs; o1 < o2=Cmax

problem is ordinary NP-hard and that the additional assumption of
ordered jobs makes the problem solvable in Oðn log nÞ time. The
conclusions of this research are summarized in Section 5.

2. An Oðn2Þ algorithm for the F2=k jobs;M1 �max +Cj
�

problem

The F2=k jobs
P

Cj
�

problem with arbitrary job processing times
is strongly NP-hard because the F2==

P
Cj problem is strongly

NP-hard (Garey, Johnson, & Sethi, 1976). The F2=M1 �max
P

Cj
�

problem (in which aj P bj) is solved optimally in Oðn log nÞ time
by arranging the jobs in the shortest processing time (SPT) order
of their aj values (Sarin & Eybl, 1978). This is a no-wait sequence
because the start time of each job on M2 is equal to its completion
time on M1 due to the aj P bj inequalities and the SPT order on M1.

We show next that the F2=k jobs; M1 �max
P

Cj
�

problem can
be solved in Oðn2Þ time by implementing the PK algorithm of
Panwalkar and Koulamas (2012) with slight modifications. The
PK algorithm is summarized next for a regular objective function
of the job completion times f ðCÞ (where f ðCÞ ¼

P
Cj in the case

of the F2=k jobs; M1 �max
P

Cj
�

problem).
Let j denote the job in position ½j� in a sequence Sn (with n jobs).

If job j is removed from Sn, then, the difference between the old
f ðCÞ and the new f ðCÞ value is called the contribution of job j to
Sn and is denoted as dj.

The PK algorithm starts with all n jobs in Sn sequenced in the
SPT order on M1. Then, it identifies the job u with the maximum
contribution du as the candidate job and removes it from Sn.
Once a job is removed, it is not added in subsequent iterations.
The time complexity of the PK algorithm is Oðn2Þ.

Proposition 1. The PK algorithm solves the F2=k jobs; M1

�max
P

Cj
�

problem optimally.

Proof. Let u be the candidate in Sn and assume that an optimal Sn�2

sequence is obtained by removing two other jobs v ; w (and retain-
ing u). Without loss of generality, let us assume that v  w (that is
v precedes w) in the SPT sequence on M1. Then,
du ¼ Cu þ

P
j!u ðCj � C0jÞ, where Cj ðC0jÞ denotes the completion time

of job j before (after) the removal of u and j! u indicates that j fol-
lows u in the SPT sequence on M1; Cj and C0j are defined similarly
when either v or w is removed instead of u. The following two cases
should be considered.

Case 1: v  u w or v  w u in the SPT sequence on M1. We
remove v before w in Sn�2. Prior to the removal of
v; dw ¼ Cw þ

P
j!w ðCj � C0jÞ and du ¼ Cu þ

P
j!u ðCj � C0jÞ. After the

removal of v ; dvw ¼ dw � av and duv ¼ du � av because the removal
of v reduces Cu; Cw by the same amount ðav Þ and does not change
the value of

P
j!u ðCj � C0jÞ and

P
j!w ðCj � C0jÞ; observe that for each

job j in these summations, both Cj and C0j are reduced by the same
amount ðav Þwhen v is removed. Therefore, if dw < du, then dvw < duv
as well and it is more beneficial to remove u and retain w in Sn�2.

Case 2: u v  w. We remove v before w in Sn�2. By definition,
dv ¼ Cv þ

P
j!v ðCj � C0jÞ and du ¼ Cu þ

P
j!u ðCj � C0jÞ when w is

part of the sequence. If w is removed, then both Cj and C0j are
reduced by the same amount ðawÞ for all jobs j! w in theP

j!u ðCj � C0jÞ and
P

j!v ðCj � C0jÞ summations respectively. The

removal of w also eliminates the term Cw � C0w from these
summations; observe that Cw � C0w ¼ av in dv and that
Cw � C0w ¼ au in du. Therefore, dvw ¼ dv � av and duw ¼ du � au.

Because of the SPT order on M1, au < av ; also, dv < du by
assumption. Therefore, dvw ¼ dv � av < du � au ¼ duw and it is
more beneficial to remove u and retain v in Sn�2. h

We illustrate the PK algorithm on a 7-job
F2=k jobs; M1 �max

P
Cj

�
problem in the Appendix A. For

comparison purposes, we also solve the corresponding
F2=k jobs; M1 �max =Cmax problem using the same dataset. As
expected, the total completion time decreases more rapidly than the
makespan in most cases especially when the number of jobs is large.

3. An Oðn2Þ algorithm for the O2=k jobs; M1 �max =Cmax

problem

Gonzalez and Sahni (1976) showed that an optimal schedule for
the O2=M1 �max =Cmax problem with makespan value C�max

¼max
Pn

j¼1 aj; maxj¼1;...;n ðaj þ bjÞ
n o

can be obtained in OðnÞ time.

We will use this result in the O2=k jobs; M1 �max =Cmax problem
for all k ¼ 1; . . . ;n. Jozefowska, Jurisch, and Kubiak (1994) showed
that the O2=di ¼ d=nT problem (with arbitrary job processing
times) is ordinary NP-hard which implies that the O2=k jobs=Cmax

problem is also ordinary NP-hard.
Koulamas and Kyparisis (1998) solved the O2=M1�

max; di ¼ d=nT problem in Oðn log nÞ time by first discarding all
jobs j with aj þ bj > d and then selecting as non-tardy jobs the first

k jobs in the SPT sequence on M1 where k is such that
Pk

j¼1 aj 6 d
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