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a b s t r a c t

Multilevel programming is used to model a decentralized planning problem with multiple decision
makers in a hierarchical system. This paper aims at providing an uncertain multilevel programming
model that is a type of multilevel programming involving uncertain variables. Besides, a genetic
algorithm is employed to solve the model. As an illustration, the uncertain multilevel programming
model is applied to a product control problem.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Multilevel programming was first proposed by Bracken and
McGill (1973) to model a decentralized noncooperative decision
system with one leader and multiple followers of equal status in
1973. It finds many applications in daily life such as strategic-force
planning (Bracken & McGill, 1974), resource allocation (Aiyoshi &
Shimizu, 1981), and water regulation (Anandalingam & Apprey,
1991). In 1990, Ben-Ayed and Blair (1990) showed that multilevel
programming is an NP-hard problem. In order to solve the model
numerically, many algorithms have been proposed such as
extreme point algorithm (Candler & Towersley, 1982), kth best
algorithm (Bialas & Karwan, 1984), branch and bound algorithm
(Bard & Falk, 1982), descent method (Savard & Gauvin, 1994),
and intelligent algorithm (Liu, 1998).

However, in many cases, the parameters in the multilevel pro-
gramming are indeterminate. Multilevel programming involving
random variable was first proposed by Patriksson and Wynter
(1999) in 1999. In addition, Gao, Liu, and Gen (2004) proposed
some new stochastic multilevel programming models in 2004.
Multilevel programming involving fuzzy set was first proposed
by Lai (1996) in 1996, and then developed by Shih, Lai, and Lee
(1996), and Lee (2001). Especially, Gao and Liu (2005) proposed a
new fuzzy multilevel programming model, and defined a Stackel-
berg–Nash equilibrium.

As we know, a premise of applying probability theory is that the
obtained probability distribution is close enough to the true
frequency. In order to get it, we should have enough samples.
But due to economical or technical difficulties, we sometimes have

no samples. In this case, we have to invite some domain experts to
evaluate the belief degree that each event happens. However, a lot
of surveys showed that human beings usually estimate a much
wider range of values than the object actually takes (Liu, 2015).
This conservatism of human beings makes the belief degrees devi-
ate far from the frequency. As a result, the belief degree cannot be
treated as probability distribution, otherwise some counterintui-
tive phenomena may happen (Liu, 2012). In order to deal with
the belief degree mathematically, an uncertainty theory was
founded by Liu (2007) in 2007, and refined by Liu (2010) in
2010. A concept of uncertain variable is used to model uncertain
quantity, and belief degree is regarded as its uncertainty distribu-
tion. As a type of mathematical programming involving uncertain
variables, uncertain programming was founded by Liu (2009) in
2009. So far, uncertain programming has been applied to many
fields such as project scheduling, vehicle routing, facility location,
and system design.

In this paper, we will propose a framework of uncertain multi-
level programming. The rest of the paper is organized as follows. In
Section 2, we review some concepts and theorems in uncertainty
theory. In Section 3, we introduce the basic form of uncertain
programming. The uncertain multilevel programming is proposed
in Section 4, and its equivalent model is obtained and a genetic
algorithm to solve the model is introduced in Section 5. In order
to illustrate the efficiency of the algorithm, an example of
production control is proposed in Section 6. At last, some remarks
are made in Section 7.

2. Preliminary

In order to model human’s belief degree, an uncertainty theory
was founded by Liu (2007) in 2007 and refined by Liu (2010) in
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2010 as a branch of axiomatic mathematics. Nowadays, it has been
widely applied to mathematical programming, and has brought
out a branch of uncertain programming (Liu, 2009) which is a spec-
trum of mathematical programming involving uncertain variables.
So far, uncertain programming has been applied to shortest path
problem (Gao, 2011), facility location problem (Gao, 2012; Wen,
Qin, & Kang, 2014), employment contract model (Mu, Lan, &
Tang, 2013), inventory problem (Qin & Kar, 2013), spanning tree
(Zhang, Wang, & Zhou, 2013), and so on.

The basic concept of uncertainty theory is uncertain measure,
which is used to indicate the belief degree of each event.

Definition 1 Liu, 2007. Let C be a nonempty set, and L be a r-
algebra on C. A set function M is called an uncertain measure if it
satisfies the following axioms,

Axiom 1: (Normality Axiom) MfCg ¼ 1;
Axiom 2: (Duality Axiom) MfKg þMfKcg ¼ 1 for any K 2 L;
Axiom 3: (Subadditivity Axiom) For every sequence of fKig 2 L,

we have

M
[1
i¼1

Ki

( )
6

X1
i¼1

MfKig:

In this case, the triple ðC;L;MÞ is called an uncertainty
space.

Besides, a product axiom was given by Liu (2009) for the
operation of uncertain variables in 2009.
Axiom 4: (Product Axiom) Let ðCk;Lk;MkÞ be uncertainty spaces

for k ¼ 1; 2; . . . Then the product uncertain measure
M is an uncertain measure satisfying

M
Y1
i¼1

Kk

( )
¼

1̂

k¼1

MkfKkg

where Kk are arbitrarily chosen events from Lk for k ¼ 1; 2; . . .,
respectively.

Uncertain variable is used to represent quantities in uncer-
tainty. Essentially, it is a measurable function on an uncertainty
space.

Definition 2 Liu, 2007. Let ðC; L; MÞ be an uncertainty space.
An uncertain variable n is a measurable function from C to
the set of real numbers, i.e., for any Borel set B of real numbers,
the set

fn 2 Bg ¼ fc 2 C
��nðcÞ 2 Bg

is an event.

Definition 3 Liu, 2009. The uncertain variables n1; n2; . . . ; nn are
said to be independent if

M
\n
i¼1

ðni 2 BiÞ
( )

¼
n̂

i¼1

M ni 2 Bif g

for any Borel sets B1; B2; . . . ; Bn of real numbers.
In order to describe an uncertain variable in practice, a concept

of uncertainty distribution is defined below.

Definition 4 Liu, 2007. The uncertainty distribution U of an
uncertain variable n is defined by

UðxÞ ¼M n 6 xf g

for any real number x.

If an uncertainty distribution has an inverse function, then the
inverse function is called an inverse uncertainty distribution. In
this case, the uncertainty distribution is called regular. Inverse
uncertainty distributions play an important role in the operation
of uncertain variables. Let n1; n2; . . . ; nn be independent uncertain
variables with uncertainty distributions U1; U2; . . . ; Un, respec-
tively. Liu (2010) showed that if the function f ðx1; x2; . . . ; xnÞ is
strictly increasing with respect to x1; x2; . . . ; xm and strictly
decreasing with respect to xmþ1; xmþ2; . . . ; xn, then n ¼ f ðn1; n2;

. . . ; nnÞ is an uncertain variable with an inverse uncertainty
distribution

W�1ðrÞ ¼ f ðU�1
1 ðrÞ; . . . ;U�1

m ðrÞ; U�1
mþ1ð1� rÞ; . . . ;U�1

n ð1� rÞÞ:

The expected value of an uncertain variable is an average of the
uncertain variable in the sense of uncertain measure.

Definition 5 Liu, 2007. The expected value of an uncertain vari-
able n is defined by

E½n� ¼
Z þ1

0
Mfn P xgdx�

Z 0

�1
Mfn 6 xgdx

provided that at least one of the two integrals is finite.
Assuming that n has an uncertainty distribution U, Liu (2007)

proved

E½n� ¼
Z þ1

0
ð1�UðxÞÞdx�

Z 0

�1
UðxÞdx:

Furthermore, Liu and Ha (2010) proved that the uncertain var-
iable n ¼ f ðn1; n2; . . . ; nnÞ has an expected value

E½n� ¼
Z 1

0
f ðU�1

1 ðrÞ; . . . ; U�1
m ðrÞ;U

�1
mþ1ð1� rÞ; . . . ; U�1

n ð1� rÞÞdr:

Here, the function f and the uncertain variables n1; n2; . . . ; nn are as
aforementioned.

3. Uncertain programming – basic form

Assume that x is a decision vector, and n is an uncertain vector.
Since an uncertain objective function f ðx; nÞ cannot be directly
maximized, we may maximize its expected value, i.e.,

max
x

E ½f ðx; nÞ�:

In addition, since the uncertain constraints gjðx; nÞ 6 0; j ¼ 1;
2; . . . ; p do not define a crisp feasible set, it is naturally desired that

the uncertain constraints hold with confidence levels a1; a2;

. . . ; ap. Then we have a set of chance constraints,

M gjðx; nÞ 6 0
� �

P aj; j ¼ 1; 2; . . . ; p:

In order to obtain a decision with maximum expected objective
value subject to a set of chance constraints, Liu (2009) proposed
the following uncertain programming model,

max
x

E ½f ðx; nÞ�

subject to :

Mfgjðx; nÞ 6 0gP aj; j ¼ 1; 2; . . . ; p:

8><
>: ð1Þ

Definition 6. A vector x is called a feasible solution to the
uncertain programming model (1) if

Mfgjðx; nÞ 6 0gP aj

for j ¼ 1; 2; . . . ; p.
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