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a b s t r a c t

We compare the computational performance of linear programming (LP) and the policy iteration algo-
rithm (PIA) for solving discrete-time infinite-horizon Markov decision process (MDP) models with total
expected discounted reward. We use randomly generated test problems as well as a real-life
health-care problem to empirically show that, unlike previously reported, barrier methods for LP provide
a viable tool for optimally solving such MDPs. The dimensions of comparison include transition probabil-
ity matrix structure, state and action size, and the LP solution method.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Discrete-time Markov decision processes (MDPs) provide a nat-
ural framework for modeling sequential decision-making problems
under uncertainty. MDPs have been applied to many areas of appli-
cation including finance, logistics, manufacturing, and recently in
health-care. While MDPs can be analyzed to prove the existence
of certain structured policies, closed-form solutions typically exist
under very restrictive conditions, therefore, most researchers solve
them numerically.

There are three common methods for optimally solving MDPs
with total expected discounted rewards, the most commonly used
MDPs. These methods are linear programming (LP), the policy iter-
ation algorithm (PIA), and the value iteration algorithm (VIA).
Littman, Dean, and Kaelbling (1995) show that the MDP problem
is polynomial in the number of states, the size of action space
and the maximum number of bits required to encode immediate
rewards and state-transition probabilities as rational numbers.
More recently, Ye (2015) proves that PIA is a strongly
polynomial-time algorithm for solving MDPs with total expected
discounted reward.

It has been proven that PIA is faster than VIA. The convergence
rate of VIA is linear, whereas the convergence rate of PIA is

superlinear (quadratic in most cases) (Puterman, 1994). As
Puterman (1994) notes ‘‘one should never use the value iteration
algorithm’’ unless there exists a structured optimal policy that
increases the speed of the VIA (such as a lower and upper bound
on the optimal value function). While modified policy iteration
algorithm (a variant of VIA) (Morton, 1971; Puterman & Shin,
1978) has been noted to have superior performance over PIA and
hence VIA for some test problems, a search of the literature shows
that the most commonly used methods for solving MDPs are PIA
and VIA. Note that unlike PIA and LP, both VIA and the modified
policy iteration algorithms generate an �-optimal policy, therefore,
� should be selected sufficiently small to ensure that the resulting
policy is exactly optimal. Surprisingly, LP has not been very popu-
lar for solving MDPs despite recent research in improving the effi-
ciency of the LPs and commercially available software.

For instance, we searched all articles published in the
EI-Compendex� database from 2005 until 2013 and identified all
articles with a keyword ‘‘Markov decision processes.’’ We found
that among studies that solved a MDP model using total expected
discounted reward criterion and reported the solution method, 19
of them used VIA, 8 used PIA and only 6 used LP as the solution
method. Table 1 lists these studies.

The purpose of this paper is to compare the computational per-
formance of LP and PIA and empirically show that LP is a viable tool
to optimally solve MDPs. It is known that PIA is equivalent to the
simplex method for solving linear programs with full pivotal oper-
ations (Kallenberg, 1983). Previous literature on comparing LP to
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PIA notes that LP is slower than PIA. In particular, in one of the few
studies comparing the two methods, Littman et al. (1995) note that
‘‘While progress has been made on speeding up linear program-
ming algorithms, MDP-specific algorithms (such as PIA) hold more
promise for efficient solution.’’ They further note that ‘‘more
empirical study is needed’’ to determine which algorithm is better
for optimally solving MDPs.

On the other hand, it is well-known that advances in computa-
tional LP over the past 15 years have resulted in extremely fast and
robust packages. Bob Bixby, the main architect of the CPLEX linear
programming software, has performed careful studies that conclu-
sively demonstrate that for many large-scale and sparse problems
(like those LPs arising from solving MDPs), LP algorithms often run
thousands of times faster than a decade ago (Bixby, 2002). This mul-
tiple order of magnitude difference is solely from improved algo-
rithms, as Bixby compared different versions of the CPLEX code
on the same (modern) computing hardward. As Puterman (1994)
noted ‘‘At present, LP has not been proven to be an efficient
method for solving large discounted MDPs; however, innovations
in LP algorithms in the past decade might change this.’’ Similarly,
and more recently, Powell states that ‘‘given the dramatic strides
in the speed of linear programming solvers over the past decade,
the relative performance of value iteration over the linear pro-
gramming method is an unresolved question.’’ (Powell, 2007).
Our work provides evideence for answering this unresolved ques-
tion, performing a careful computational experiment comparing
PIA (typically superior to VIA) to LP.

We focus on comparing PIA and LP particularly for MDPs with
transition probability matrices populated around the diagonal
entries, a common structure observed in MDPs developed for treat-
ment optimization problems (Alagoz, Maillart, Schaefer, & Roberts,
2004; Alagoz, Maillart, Schaefer, & Roberts, 2007a, Alagoz, Maillart,

Schaefer, & Roberts, 2007b; Kurt, Denton, Schaefer, Shah, & Smith,
2011; Sandıkçı, Maillart, Schaefer, Alagoz, & Roberts, 2008;
Schaefer, Bailey, Shechter, & Roberts, 2004; Shechter, Bailey,
Schaefer, & Roberts, 2008). In these MDP models, the state space
typically represents the health state of the patient and the transi-
tion probabilities determine how the patient health changes over
time. Because patient health does not change dramatically in a sin-
gle decision epoch, such MDPs have sparse transition probability
matrices with nonzero entries densely populated around the diag-
onals. For such problems, LPs may provide a useful tool since com-
mercially available software typically takes the advantage of the
structure of the constraint matrix.

In this study, we use many randomly generated test problems
to empirically compare the performance of LP and PIA. We focus
our attention to PIA instead of VIA since it has been shown to con-
verge to the optimal solution faster than VIA. Furthermore, the
selection of � is critical for comparing the performance of VIA
and LP. Unlike previous researchers who note that LPs are slower
than PI, we find that the performance of LP is superior to PIA in
most of the test problems. Furthermore, we test the effects of tran-
sition probability matrix structure (such as matrices with a
banded-diagonal structure) on the performance of LPs. We con-
clude with a comparison of the performance of PIA and LP on a
real-life MDP model that optimizes colonoscopy screening deci-
sions for early diagnosis of colorectal cancer.

The remainder of this paper is organized as follows: In
Section 2, we present a formal definition of the MDPs under con-
sideration and describe LP and PIA for optimally solving them.
We provide our computational experiments and results in
Section 3, and in Section 4, we discuss our findings and
conclusions.

2. MDPs and solution algorithms

We refer to the collection of objects, (T; S;As; Pð:js; aÞ; rðs; aÞ) as a
discrete-time infinite-horizon MDP with stationary rewards and
transition probabilities, where T ¼ f1;2; . . .g represents the deci-
sion epochs, S represents the state space, As represents the action
space for state s 2 S; Pð:js; aÞ represents the transition probabilities
for a given state s and action a 2 As; and rðs; aÞ is the immediate
reward function for state s and action a.

A decision rule specifies the action selection from As for each
state, i.e., dðsÞ 2 As. We can drop the index s from this expression
and use d 2 A to represent a decision rule specifying the actions
to be taken at all states, where A ¼ [s2SAs is the set of all actions.
A policy d is a sequence of decision rules to be used at each decision
epoch.

We consider an infinite-horizon discounted MDP with a dis-
count factor k, where 0 6 k < 1. The optimal policy of such an
MDP can be found by solving the following optimality equations
(Puterman, 1994):

VðsÞ ¼ sup
a2As

rðs; aÞ þ
X
j2S

kPðjjs; aÞVðjÞ
( )

for s 2 S; ð1Þ

where VðsÞ is the optimal value of the MDP at state s. The policy
maximizing (1) is the optimal policy. Note that some MDPs opti-
mize average expected reward (White, 1993) or total expected
reward (Puterman, 1994) whereas we focus on MDPs that optimize
total expected discounted reward.

The PIA proceeds as follows:

Step 1. Set n ¼ 0, select an arbitrary decision rule d0 2 A.
Step 2. (Policy evaluation) Obtain Vn by solving

ðI � kPdnÞV
n ¼ rdn ; ð2Þ

Table 1
Solution methods used in infinite-horizon total expected discounted MDP articles
published in INSPEC database between 2005 and 2012.

Author Year Method

Buongiorno and Zhou (2011) 2011 LP
Wang and Schonfeld (2010) 2010 LP
Farran and Zayed (2009) 2009 LP
Grizzle et al. (2008) 2008 LP
Bello and Riano (2006) 2006 LP
Le Ny and Feron (2006) 2006 LP
Sun et al. (2011) 2011 PIA
Sandıkçı et al. (2008) 2008 PIA
Alagoz et al. (2007a) 2007 PIA
Alagoz et al. (2007b) 2007 PIA
Idoumghar and Schott (2006) 2006 PIA
Kuppuswamy and Lee (2005) 2005 PIA
Chang and Chong (2005) 2005 PIA
Mosharaf et al. (2005) 2005 PIA
Flapper et al. (2012) 2012 VIA
Rezaei Yousefi et al. (2012) 2012 VIA
Viet et al. (2012) 2012 VIA
Arruda et al. (2011) 2011 VIA
Chen and Liu (2011) 2011 VIA
Sharna et al. (2011) 2011 VIA
Al-Zubaidy et al. (2010) 2010 VIA
Asadian et al. (2010) 2010 VIA
Kurt and Kharoufeh (2010) 2010 VIA
Min and Yih (2010) 2010 VIA
Farrokh et al. (2009) 2009 VIA
Akselrod and Kirubarajan (2008) 2008 VIA
Stevens-Navarro et al. (2008) 2008 VIA
Al-Zubaidy et al. (2007) 2007 VIA
Chen and Cheng (2007) 2007 VIA
Agrawal et al. (2007) 2007 VIA
Chamberland et al. (2007) 2007 VIA
Glazebrook et al. (2005) 2005 VIA
Zobel and Scherer (2005) 2005 VIA
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