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The permutation flowshop scheduling problem (PFSP) is NP-complete and tends to be more complicated
when considering stochastic uncertainties in the real-world manufacturing environments. In this paper, a
two-stage simulation-based hybrid estimation of distribution algorithm (TSSB-HEDA) is presented to
schedule the permutation flowshop under stochastic processing times. To deal with processing time
uncertainty, TSSB-HEDA evaluates candidate solutions using a novel two-stage simulation model
(TSSM). This model first adopts the regression-based meta-modelling technique to determine a number
of promising candidate solutions with less computation cost, and then uses a more accurate but time-
consuming simulator to evaluate the performance of these selected ones. In addition, to avoid getting
trapped into premature convergence, TSSB-HEDA employs both the probabilistic model of EDA and
genetic operators of genetic algorithm (GA) to generate the offspring individuals. Enlightened by the
weight training process of neural networks, a self-adaptive learning mechanism (SALM) is employed to
dynamically adjust the ratio of offspring individuals generated by the probabilistic model.
Computational experiments on Taillard’s benchmarks show that TSSB-HEDA is competitive in terms of
both solution quality and computational performance.
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1. Introduction

The permutation flowshop scheduling problem (PFSP) is a well-
known and well-studied combinatorial optimisation problem
(Gupta & Stafford, 2006; Vallada & Ruiz, 2009). In the classical
PFSP, jobs arrive at the shop floor simultaneously and then follow
the same processing order on each of the machines. The PFSP has
been proven strongly NP-complete for more than two machines
(Garey, Johnson, & Sethi, 1976). Due to its great significance in both
academic and real-world applications, the PFSP has attracted con-
siderable attention after the pioneering work of Johnson (1954).

Although a tremendous amount of effort has been devoted to
addressing the PFSP, most of the research works consider a static
environment, in which no unexpected events would occur to dis-
turb job processing. Real-world manufacturing environments,
however, tend to suffer a variety of uncertainties, including change
of processing time, machine breakdown, rush orders, and job can-
cellations, etc. (Gholami, Zandieh, & Alem-Tabriz, 2009; Ouelhadj &
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Petrovic, 2009). Therefore, permutation flowshop scheduling under
uncertainties has recently received an increasing attention.

Three types of approaches, namely exact algorithms, heuristics,
and meta-heuristics, are commonly adopted to solve the PFSPs in
the literature (Ruiz & Maroto, 2005; Xu, Yin, Cheng, Wu, & Gu,
2014). Exact algorithms aim to achieve the optimal solution, and
hence are computationally expensive for large-sized PFSPs. Exam-
ples of such methods are branch and bound approaches (Chung,
Flynn, & Kirca, 2002). In addition to exact algorithms, heuristics
and meta-heuristics have also been introduced to find approximate
solutions within reasonable computational cost. Since most exist-
ing heuristic methods, such as constructive heuristics and
improvement heuristics, tend to perform poorly on large-sized
PFSPs (Ceberio, [rurozki, Mendiburu, & Lozano, 2014), a wide range
of meta-heuristics have been applied to address the PFSPs
(Zobolas, Tarantilis, & loannou, 2009).

To deal with uncertainties in a flowshop, the simulation-based
meta-heuristics (SBM) have been successfully developed to con-
struct and evaluate candidate solutions. In these approaches, a
discrete-event simulator is usually incorporated into a meta-
heuristic (Wang, Choi, Qin, & Huang, 2013), such as genetic
algorithm (GA) (Dugardin, Yalaoui, & Amodeo, 2010), immune
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algorithm (Zandieh & Gholami, 2009), ant colony optimisation
(ACO) algorithm (Ahmadizar, Ghazanfari, & Ghomi, 2010), and
hybrid meta-heuristics (Safari & Sadjadi, 2011). As an iterative
procedure, the meta-heuristic guides its subordinate heuristics to
iteratively produce high-quality candidate solutions until a termi-
nation criterion is met. In the SBM, the performance of candidate
solutions is estimated over iterations using the discrete-event sim-
ulator. Accordingly, the computation time of such an evaluation
process inevitably greatly increases with the growth of the number
of candidate solutions or simulation replications. The main disad-
vantage of SBM technique therefore lies in the large computation
time required for performance evaluation under uncertainties
(Dugardin et al., 2010).

To overcome such drawback, some effective approaches have
recently been proposed for scheduling under uncertainties. Instead
of estimating the performance of all candidate solutions, these
approaches only evaluate a number of promising candidate
solutions by a time-consuming simulator. Zhang, Song, and Wu
(2012) developed a hybrid particle swarm optimisation (PSO)
algorithm for stochastic job shop scheduling problems. They first
adopted the lower bound of the objective value to give a quick per-
formance evaluation on candidate solutions, and then only the
ones in the satisfactory regions were further estimated using a
discrete-event simulator. Moreover, to determine the promising
candidate solutions for further optimisation under uncertainties,
both Horng, Lin, and Yang (2012) and Juan, Barrios, Vallada,
Riera, and Jorba (2014) applied the stochastic simulation model
with less simulation replications for performance evaluation.

Despite an increasing amount of research interest in developing
new SBMs, few research works have been reported on improving
their computational performance for scheduling problems under
uncertainties.

This paper therefore presents an effective SBM to address the
PFSPs under stochastic processing times. Enlightened by the works
of Zhang et al. (2012), Horng et al. (2012), and Juan et al. (2014), we
incorporate an efficient two-stage simulation-based model into a
hybrid estimation of distribution algorithm (EDA) to generate
good-quality schedules with less computational effort.

The EDA was first introduced by Miihlenbein and Paass (1996)
as an alternative to conventional evolutionary algorithms (EA). Dif-
ferent from conventional EAs, EDA adopts a probabilistic model to
generate the offspring. This model is established by learning from
an elite set of individuals in the previous population. As an effec-
tive method to inherit good genes over generations, EDA has
recently been successfully used to a wide range of combinatorial
optimisation problems (Hauschild & Pelikan, 2011), such as the
PFSP and its variants. Jarboui, Eddaly, and Siarry (2009) presented
an efficient EDA to solve the PFSP with total flow time minimisa-
tion. For the same scheduling problem, Zhang and Li (2011)
improved the EDA efficiency by incorporating the longest common
subsequence into the probabilistic model. Wang, Wang, Liu, and Xu
(2013) developed an effective EDA to minimise the makespan of
the distributed permutation flowshop. More recently, Ceberio
et al. (2014) introduced a probabilistic distance-based ranking
exponential model, named the Mallows model, to construct EDA
solutions. To further investigate the performance of EDA for the
PFSP, hybridisation of EDA with other meta-heuristics has also
been studied. Liu, Gao, and Pan (2011) hybridised EDA with PSO
to allow social information sharing among candidate solutions.
Moreover, Tzeng, Chen, and Chen (2012) incorporated the idea of
ant colony system (ACS) into EDA to schedule a permutation
flowshop.

The proposed two-stage simulation-based hybrid EDA
(TSSB-HEDA) differentiates itself from the conventional EDA by

two mechanisms, namely a two-stage simulation model (TSSM)
and a self-adaptive learning mechanism (SALM). To reduce the
computation cost of TSSB-HEDA, TSSM first employs a regression-
based meta-model to provide a rough estimation of candidate solu-
tions, and only a number of promising ones are identified and fur-
ther evaluated using a discrete-event simulator. Moreover, to
prevent EDA from early search stagnation, TSSB-HEDA employs
both the probabilistic model of EDA and genetic operators of GA
to produce offspring individuals. Motivated by the idea of neural
network training, SALM dynamically adjusts the ratio of offspring
generated by the probabilistic model to avoid being trapped into
premature convergence. An extensive search of literature on PFSP
suggests that not much research effort has been devoted to apply-
ing EDA to schedule the permutation flowshop under uncertainties.

The rest of the paper is organised as follows. Section 2 presents
the mathematical formulation of PFSP. Section 3 describes the
proposed TSSB-HEDA in details. To validate the performance of
TSSB-HEDA under stochastic processing times, simulations are
conducted and the computation results are analysed in Section 4.
Finally, in Section 5, we conclude the paper and discuss some
topics for future research.

2. Problem description

The PFSP is a well-known combinatorial optimisation problem.
In the classical PFSP, a finite set J={1, 2, ..., n} of n jobs are firstly
released simultaneously to the shop floor, and then are processed
on a finite set M = {my, my, ..., my,} of m machines with no pre-
emption allowed. Each job j, j €], consists of m operations that
have to be processed on the machines in the order of my, my, ...,
my,. All the jobs have deterministic processing times and follow
the same processing order on each machine.

In the real-world manufacturing environments, however, a vari-
ety of unexpected events, such as tool wear, equipment failure,
operator unavailability, and quality issues, may lead to uncertain
processing times (Lawrence & Sewell, 1997). This paper describes
the processing time uncertainty using the level of processing time
variation (LPTV), which is described as follows:

LPTV = 6/E(P) (1)

where E(P) and ¢ indicate the expected value and the standard devi-
ation of processing time, respectively. According to formula (1), a
larger LPTV may result in a large deviation between the expected
and the actual processing times. For example, suppose E[P] of a
job equals 15 time units, LPTV values of 0.2 and 0.4 lead the stan-
dard deviation of actual processing time from E[P] to be 3 and 6
times units respectively.

The objective of PFSP in this study is to determine a feasible
permutation 7 to minimise the makespan, i.e. the maximum com-
pletion time of all operations. With consideration of processing
time uncertainty, we formulate the PFSP as follows:

min{E[C(7,, m)]} )
Subject to the following constraints:

C(my,1) = SP(my, 1) 3)
C(m. 1) = C(m1, 1) + SP(m, 1), j=2....n (4)

C(m1,i) = C(my,i — 1)+ SP(my,i), i=2,...,m (5)

C(mj, i) = max{C(m;_q,1),C(m;,i — 1)} + SP(m;, 1),
i=2,....mj=2,....n (6)
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