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a b s t r a c t

Nowadays, in all countries, public resources for healthcare are inadequate to meet the demands for the
services. Therefore, policy makers should provide the most effective healthcare services to citizens within
the limited available resources. During the past decades, lots of research using operations research
techniques, tools, and theories has been applied to a wide range of problems in healthcare. Ambulance
service planning is a branch of healthcare. Ambulance location and redeployment problems are consid-
ered two important issues in ambulance service planning. In these models, an attempt is made to max-
imize coverage in the districts and properly service the patients in emergency situations.

In this paper, at first we use an existing model, named MECRP1, to locate ambulances in four districts of
Isfahan, Iran. Then, we formulate a generalized assignment model with the aim of minimizing the total time
traveled by ambulances. We also formulate a generalized bottleneck assignment model. The goal of this
model is to minimize the maximum travel time. The proposed models specify the movement of the
ambulances, using the out of MECRP determines the relocation of the ambulances in just one run for all
possible combinations. In fact, each of these models specifies the movement of the ambulances from
hospitals to stations or from stations to other stations based on its aim.

In addition, to shed light on the merits of the proposed models, computational results on experimental
data from Isfahan EMS agency are provided. The results, using these models, show travel times can be
significantly reduced. By the end of this paper, the corresponding conclusions are expressed.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The goal of EMS2 is to reduce mortality, disability, and suffering.
EMS decision makers deal with the difficult task of locating ambu-
lances, to quickly and optimally service emergency medical calls.
Furthermore, they are often under pressure from contractual obliga-
tions or managerial goals to meet the standard levels of performance
criteria. This problem becomes more complicated when the number
of emergency calls, increases, operational costs increase or traffic
conditions get worse. Ambulance location and relocation models
can improve the levels of the performance criteria and alleviate such
intricacies (Maxwell, Restrepo, Henderson, & Topaloglu, 2010).

These models will provide the maximum level of preparedness
for different zones. They provide good coverage in the zones where
dispatching of ambulances has led to a low-level of preparedness

(Andersson & Värbrand, 2007). The demand for ambulances fluctu-
ates throughout the week, depending on the day of the week, and
even time of the day. Therefore, EMS operators can improve system
performance by dynamic relocation of ambulances in response to
fluctuating demand patterns (Rajagopalan, Saydam, & Xiao,
2008). Ambulance location and redeployment models are classified
in three main categories as follows: deterministic static models,
probabilistic static models, and dynamic models.

1.1. Deterministic static models

Early proposed ambulance location models were linear integer
formulations (Brotcorne, Laporte, & Semet, 2003). Since these
models did not consider the probability that a particular
ambulance might be busy at a given time, they were deterministic
(Rajagopalan & Saydam, 2009). Furthermore, because ambulances
are not allowed to relocate among stations, these models were sta-
tic (Brotcorne et al., 2003). Toregas, Swain, ReVelle, and Bergman
(1971) published the first coverage model known as the set cover-
ing location problem (SCLP). This model looks for the least number
of ambulances needed to cover all demand points within a given
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response-time. Response-time is the period between an emergency
call is recorded and the time the first ambulance arrives at the
scene in a life-threatening case. This model ignores several aspects
of real-life problems, the most important being, that once an
ambulance is dispatched, some demand points are no longer cov-
ered. It also assumes that up to W ambulances are available, which
is not always the case in practice (Brotcorne et al., 2003). Since
SCLP treats all demand points equally, the solution may require
more servers than needed or underestimates the number of ambu-
lances needed for those locations with relatively heavy demand
(Saydam & Aytug, 2003). To avoid such outcomes, Church and ReV-
elle developed the maximal covering location problem (MCLP)
(Church & ReVelle, 1974). The goal of their model was to maximize
the population covered with limited resources.

In each of the above models, coverage may become inadequate
when vehicles become busy. Hence, to compensate for this short-
coming, Daskin and Stern (1981) extended the set covering model
to include an objective of maximizing the number of zones covered
by more than one vehicle. In fact, with high levels of multiple cov-
erage, a partially congested system may more often be capable of
responding to demand within the distance standard even when
the most desirable unit is busy. Eaton & Morgan, 1986 applied a
multi objective formulation to determine the optimal locations of
emergency medical services in Santo Domingo, Dominican Repub-
lic. The model minimized the number of facilities and maximized
multiple demand coverage. Hogan and ReVelle (1986) extended
the maximal covering model and the set covering model by adding
a second objective to maximize the number calls covered by 2 or
more vehicles. Gendreau, Laporte, and Semet (1997) developed a
model known as the double standard model (DSM). This model
maximizes the demand covered by at least two vehicles, implicitly
taking into account the fact that vehicles might become unavail-
able, while ensuring certain extra requirements concerning cover-
age are met.

The traditional definition used in MCLP model is that a demand
node is assumed to be covered completely if it is within the target
distance, otherwise it will not be covered. Since the optimal solu-
tion to a MCLP is likely sensitive to the choice of the target dis-
tance, this definition may lead to erroneous results. Karasakal
and Karasakal (2004) allowed the coverage to change from ‘‘cov-
ered’’ to ‘‘not-covered’’ within a distance range instead of a single
target distance and called this intermediate coverage level partial
coverage. Then, they formulated the MCLP in the presence of partial
coverage. Doerner & Hartl, 2008 modified the objective function of
the DSM, and implemented the Tabu Search in Gendreau, Laporte,
and Semet (2001) to obtain near optimal solutions. Drezner,
Drezner, and Goldstein (2010) proposed a stochastic gradual cover-
age model in which the short and long distance standards are ran-
dom variables. Berman, Drezner, and Krass (2010) formulated the
Cooperative Location Set Covering Problem (CLSCP) and the Coop-
erative Maximum Covering Location Problem (CMCLP). The goal of
these models is to replace the ‘‘individual coverage’’ assumption
with a mechanism where all facilities contribute to the coverage
of each demand point.

1.2. Probabilistic static models

Deterministic models did not account for the probability of a
particular ambulance being busy at a given time. As a result, they
either underestimated the number of ambulances needed, or over-
estimated the actual coverage provided (Rajagopalan & Saydam,
2009). Hence, to compensate for this shortcoming, probabilistic
models were developed. Probabilistic location models recognize
any given ambulance may be busy when it is called. Such uncer-
tainty can be modeled within the mathematical programming for-
mulation or using a queuing framework (Rajagopalan et al., 2008).

One of the first probabilistic models for ambulance location is
the Maximum Expected Coverage Location Problem (MEXCLP)
due to Daskin (1983). He removed the implicit assumption of
deterministic models, all units are available at all times, by assum-
ing each ambulance has the same probability q, called the busy
fraction, of being unavailable to answer a call. He also assumed
all ambulances are independent. Given a predetermined number
of response units, MEXCLP maximizes the expected coverage sub-
ject to a response–time standard. Saydam and McKnew (1985)
used a separable programming approach to reformulate the
MEXCLP into a nonlinear form.

ReVelle and Hogan (1989b) extended the notion of MEXCLP by
introducing the probabilistic location set covering problem (PLSCP)
model to utilize a region-specific busy fraction instead of a
system-wide busy fraction as in the MEXCLP. PLSCP includes a
set of constraints on the reliability of a server being available. Since
PLSCP will usually lead to a potentially large number of servers
being assigned or required, ReVelle and Hogan (1989a) developed
a chance constrained stochastic model called MALP (Maximum
Availability Location Problem). This model distributes a fixed
number of servers to maximize the population covered within a
response–time standard and with a predetermined reliability.
Since the MALP attempts to make the best possible use of available
limited resources, this model is more applicable than the PLSCP to
real world problems. There are two versions of the MALP. The
MALP-I assumed that the facilities had the same busy fraction q.
However, in the MALP-II, the busy fraction qi associated with
demand point i was computed as the ratio of the total duration
of all calls generated from demand point i to the total availability
of all facilities in Wi.

The common assumptions to the MEXCLP and its new forms,
such as the same busy fraction and ambulance independence,
make models easier to build and solve. However, MEXCLP models
lack an accurate estimation of the expected coverage. Some
researchers resorted to hypercube queuing models to obtain better
estimation of the expected coverage. Batta, Dolan, and
Krishnamurthy (1989) developed an approximate way to relax
the server independence assumption in MEXCLP in using the
hypercube correction factor developed by Larson (1981). This cor-
rection factor, applied to the MEXCLP objective function, led to an
adjusted model, which the authors called AMEXCLP. Ball and Lin
(1993) formulated a new version of PLSCP called Rel-P. This model
incorporates a linear probabilistic constraint on the number of
vehicles required to achieve a given reliability level. Later
Marianov and ReVelle (1994) extended PLSCP using the assump-
tion of region-specific busy fraction in MALPII to formulate queu-
ing probabilistic location set covering problem (Q-PLSCP).
Marianov and ReVelle (1996) proposed the queuing maximal avail-
ability location problem (Q-MALP). The main difference between
MALP and Q-MALP is the methodology for the calculation of the
smallest integer which satisfies the required reliability.

Beraldi, Bruni, and Conforti (2004) developed a stochastic pro-
gramming model with probabilistic constraints aimed to solve
both the location and the dimensioning problems, i.e. where ser-
vice sites must be located and how many emergency vehicles must
be assigned to each site, in order to achieve a reliable level of
service and minimize the overall costs. In fact, they incorporated
probabilistic constraints in their model to ensure all requests are
served with a prescribed high probability. Galvão, Chiyoshi, &
Morabito, 2005 presented a unified view of MEXCLP and MALP,
named EMALP, by dropping their simplifying assumptions of serv-
ers operating independently and with the same busy probability.
Alsalloum and Rand (2006) extended MCLP and developed Goal
Programming models. They first determined locations of facilities
to maximize expected demand coverage and then adjusted the
capacity of each station.
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