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a b s t r a c t

We study the polyhedral approach to the cardinality-constrained linear programming problem (CCLP).
First, we generalize Bienstock’s critical-set inequalities. We find necessary and sufficient conditions for
the generalized inequalities to define facets of the convex hull of CCLP’s feasible set. Then, we show
how to derive lifted surrogate cutting planes on-the-fly. We test the use of both families of inequalities
on branch-and-cut to solve difficult instances of CCLP to proven optimality. Our computational results
indicate that the use of the inequalities can reduce the time required to solve CCLP by branch-and-cut
considerably.

� 2015 Published by Elsevier Ltd.

1. Introduction

Let m;n and K be positive integers, M ¼ 1; . . . ;mf g, and
N ¼ 1; . . . ;nf g. The cardinality-constrained linear programming prob-
lem (CCLP) is

maximize
X
j2N

cjxj

subject to
X
j2N

aijxj � bi i 2 M ð1Þ

xj � 0 j 2 N ð2Þ
xj � 1 j 2 N ð3Þ

at most K variables xj can be nonzero: ð4Þ

Constraint (4), which we call cardinality, arises for example in
finance (Perold, 1984; Qiu, Ahmed, Dey, & Wolsey, 2014) and
petroleum engineering (Vasantharajan & Cullick, 1997); see also
Boyd (2012), Kellerer, Pferschy, and Pisinger (2004), Buglieri,
Ehrgott, Hamacher, and Maffioli (2006). de Farias and Nemhauser
(2003) showed that CCLP is NP-hard even when m ¼ 1.

We assume that:

Assumption 1. a1 � � � � � an.

Assumption 2. K � n� 1.

Assumption 3.
PK

j¼1aj � b.

Assumption 4. b � 0 and aj � 0; 8j 2 N.

Assumption 1 is without loss of generality (WLOG). When
Assumption 2 does not hold, (4) is redundant, so it is also WLOG.
Given Assumptions 1, 3 guarantees feasibility. Assumption 4 car-
ries loss of generality. However, it is satisfied in important applica-
tions, e.g. portfolio selection (Bienstock, 1996).

Let S ¼ fx 2 Rn: (2)–(5) holdg, whereX
j2N

ajxj � b ð5Þ

is one of the inequalities (1), and let P ¼ convðSÞ. Here, we study
two families of inequalities valid for S and their use within
branch-and-cut to solve CCLP to proven optimality.

The polyhedron P, under Assumption 4, was studied by
Bienstock (1996), who in particular introduced critical-set inequal-
ities for P. On the other hand, P, under the different assumption that
b < 0 and aj < 0; 8j 2 N was studied by de Farias and Nemhauser
(2003). The case where the variables are binary was considered
by Stephan (2010) and Zeng and Richard (2011).

Here we give two new inequalities for P. Our first family of
inequalities generalizes Bienstock’s critical-set inequalities. Our
second family of inequalities is obtained by lifting surrogate cardi-
nality constraints, i.e., inequalities of the type
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X
j2N0

xj � K; ð6Þ

where N0 � N.
Given a set of indices A # N, we denote the minimum and max-

imum elements of A as minðAÞ and maxðAÞ, respectively. We let
A ¼ N n A and bA ¼ A [ fj 2 N : j > maxðAÞg. For a given nonnegative
integer t, we let At be the set consisting of the t smallest elements
of A (if t ¼ 0;At ¼£, and if t >j A j; At ¼ A). Finally, we defineP

i2£ai ¼ 0.
In Section 2 we study the trivial facets of P. In Section 3 we gen-

eralize Bienstock’s critical-set inequalities. In Section 4 we consider
the problem of lifting inequalities valid for P and we discuss lifted
surrogate constraints. In Section 5 we explain our separation heu-
ristics and lifting algorithm. In Section 6 we report the results of
our computational experience with instances of CCLP. In Section
7 we present conclusions and directions for further research.

2. Trivial inequalities

We call trivial the valid inequalities that are ‘‘easily’’ inferred by
the definition of P. In this section we provide necessary and suffi-
cient conditions for them to be facet-defining. We also give neces-
sary and sufficient conditions for P to be full-dimensional. The
proofs of the propositions of this section are simple, and therefore
omitted (see Kozyreff, 2014 for the proofs).

Proposition 1. The polytope P is full-dimensional iff the following
conditions hold:XK

j¼1

aj > b ð7Þ

andXK�1

j¼1

aj þ an � b: ð8Þ

Because the inequality description of a polyhedron is much sim-
pler when it is full-dimensional, we assume that:

Assumption 5. Conditions (7) and (8) hold.

Proposition 2. Inequality (5) defines a facet of P.

Proposition 3. Inequality (2) defines a facet of P, 8j > K. It is facet-

defining for j � K iff
PKþ1

i¼1 ai � aj > b and
PK

i¼1ai � aj þ an � b.
If (2) is not facet-defining for some j � K , then, by the previous

proposition, at least one of the two conditions must fail. IfPKþ1
i¼1 ai � aj � b, then (5) forces every xi with i � j to be nonnega-

tive. If
PK

i¼1ai � aj þ an < b, then xn > 0 forces every xi with i � j
to be positive.

Proposition 4. Inequality (3) defines a facet of P 8j < K. It is facet-

defining for K � j � n� 1 iff
PK�1

i¼1 ai þ aj > b and
PK�2

i¼1 ai þ ajþ
an � b. Finally, it is facet-defining for j ¼ n iff

PK�1
i¼1 ai þ an > b andPK�2

i¼1 ai þ an�1 þ an � b.
If (3) is not facet-defining for some j � K , then there exists a set

C � N; j C j� 2, such that j 2 C and
P

i2Cxi � 1 is valid for P. We will
return to this in the next section, when we study critical-set
inequalities.

Proposition 5. The inequalityX
j2N

xj � K ð9Þ

is valid for P. It defines a facet of P iff
PKþ1

j¼2 aj � b.

Example 1. Let S ¼ fx 2 ½0;1�8 : 11x1 þ 10x2 þ 9x3 þ 8x4 þ 5x5þ
2x6 þ 2x7 þ 1x8 � 21; and at most 3 variablesxjcan be positiveg.
Then P is full dimensional, x2 � 0; . . . ; x8 � 0 define facets of P
(x1 � 0 does not), x1 � 1; . . . ; x3 � 1 define facets of P
(x4 � 1; . . . ; x8 � 1 do not), and

P8
j¼1xj � 3 is facet-defining for P.

Example 2. Let S¼fx2 ½0;1�8 : 11x1þ10x2þ8x3þ7x4þ6x5þ5x6þ
2x7þ1x8�23;and at most 4 variablesxjcan be positiveg. Then P is
full dimensional, both xj�0 and xj�1 define facets of P for all
j2f1; . . . ;8g, and

P8
j¼1xj�4 is facet-defining for P.

3. Generalized critical-set inequalities

We now generalize Bienstock’s critical-set inequalities
(Bienstock, 1996), and we give necessary and sufficient conditions
for them to define facets of P.

Definition 1. (Bienstock (1996)) A set C � N is critical if 8J � C
with j J j¼ K;

P
j2Jaj < b.

Definition 2. Let d 2 f2; . . . ;Kg. A set C � N, with j C j� d, is d-crit-
ical ifX
j2CK�d

aj þ
X
j2Cd

aj < b:

A d-critical set is maximal if 8j 2 C;C [ fjg is not d-critical.
If C is d-critical, then no more than d� 1 variables with index in

C can be positive. Thus,X
j2C

xj � d� 1 ð10Þ

is valid for P. Note that if C is d-critical, then so is bC . We call (10) a
generalized critical-set inequality. We now give necessary and suffi-
cient conditions for generalized critical-set inequalities to define
facets.

Proposition 6. Let C � N be a maximal d-critical set, with
d 2 f2; . . . ;Kg, and suppose that maxðCK�dþ1Þ < minðCÞ. Then (10)
is facet-defining for P iff the following conditions hold:

(i)
P

j2CK�dþ1
aj þ

P
i2Cd

aj � aminðCÞ � b
(ii)

P
j2CK�dþ1

aj þ
P

i2Cd�2
aj þ amaxðCÞ � b

(iii)
P

j2CK�dþ1
aj þ

P
i2Cd�1

aj > b.

Proof. Suppose that (i)–(iii) hold. Since C is maximal, maxðCÞ ¼ n,
and (ii) implies that

P
j2CK�d

aj þ ai þ
P

j2Cd�1
aj � b, for all

i 2 C n CK�dþ1.
Let y 2 ð0;1Þ such that

P
j2CK�d

aj þ amaxðCK�dþ1Þ
yþ

P
j2Cd�1

aj > b.

The following n points belong to P, are linearly independent, and

satisfy (10) at equality:
For i 2 Cd : xi

j ¼ 1 8j 2 CK�dþ1; xi
j ¼ 1 8j 2 Cd n fig, and xi

j ¼ 0
otherwise; for i 2 C nCd : xi

j ¼ 1 8j 2 CK�dþ1;xi
j ¼ 1 8j 2 Cd�2;xi

i ¼ 1,

and xi
j ¼ 0 otherwise; for i2CK�dþ1 : xi

j¼1 8j2CK�dþ1 nfig;xi
i¼

1 8j2Cd�1;xi
i¼y, and xi

j¼0 otherwise; for i2C nCK�dþ1 : xi
j¼1

8j2CK�d;xi
j¼1 8j2Cd�1;xi

i¼1, and xi
j¼0 otherwise.

Suppose now that (10) is facet-defining for P. If (i) does not hold,
then xminðCÞ ¼ 1 for every feasible point satisfying (10) at equality.
If (ii) does not hold, then xn ¼ 0 for every feasible point satisfying
(10) at equality. If (iii) does not hold, then every point satisfying
(10) at equality also satisfies (5) at equality. h
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