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a b s t r a c t

We propose a heuristic-exact hybrid algorithm that consists of a heuristic phase, based on two novel heu-
ristics, followed by an exact phase, based on an adapted Ford–Fulkerson algorithm, to solve the Balanced
Transportation Problem (BTP). First, we propose three alternative primal models for the BTP. We also
define the concepts of negative sets, negative dual rectangles, and the optimal tableau for the BTP. Next,
we explore the relationships between these concepts. We also propose two greedy heuristics, based on a
linear programming relaxation of the BTP model, to find some negative sets and negative dual rectangles.
These two heuristics turn out to be very efficient and obtain optimal or near-optimal BTP tableaus
rapidly, as confirmed by the computational experiments. Then, an adapted Ford–Fulkerson algorithm
is presented and used to find an optimal solution. The two important advantages of our adapted Ford–
Fulkerson algorithm over the standard Ford–Fulkerson algorithm are more flexibility and efficiency.
Extensive computational results show that the growth in run-time of our hybrid algorithm, on average,
is approximately a linear function of the BTP size. It has significant advantage over the transportation
simplex method and on the largest problem instances it is almost five times faster. A key feature of
the proposed algorithm is that it is free of degeneracy and cycling altogether.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The transportation problem (TP) is a special type of linear
program which seeks to find the minimum cost way to transport
goods from a set of sources or supply locations i ¼ 1; . . . ;m to a
set of destinations or customers j ¼ 1; . . . ;n. Supply location i has
a supply of si units, and customer j has a demand of dj units. The
cost per unit transported from supply location i to customer j is
denoted by cij, and the number of units transported is denoted
by xij. If the sum of the supplies at the sources equals the sum of
the demands at the destinations, then the problem is called a
Balanced Transportation Problem (BTP). Companies that have
multiple manufacturing sites, many distribution centers and ware-
houses, and multiple customers, use the transportation problem to
minimize their distribution costs while satisfying all the
constraints. The transportation problem also has applications in
signature matching, where one signature could be defined as the
source and the other as the customer and by setting the cost for
a source-customer pair to the ground distance between an element

in the first signature and an element in the second (Rubner,
Tomasi, & Guibas, 2000). The transportation problem is a special
case of the minimum cost flow problem where all the sources are
on one side of a bipartite graph and all the destinations on the
other side. A number of applications of the minimum cost flow
problem, including multiperiod production and inventory planning
problems and cash management problems, are discussed in Glover,
Klingman, and Phillips (1992) and Ahuja, Magnanti, and Orlin
(1993).

In this work, we consider three primal models for the BTP and
define the concepts of negative sets and negative dual rectangles.
We also propose two greedy heuristics based on a linear program-
ming relaxation of the BTP model to rapidly find a near-optimal
BTP tableau. Then, an adapted Ford–Fulkerson algorithm is
presented and used to find an optimal solution. The two important
advantages of our adapted Ford–Fulkerson algorithm over the
standard Ford–Fulkerson algorithm are flexibility and efficiency.
Finally, we propose a hybrid algorithm that consists of these two
heuristics and the adapted Ford–Fulkerson algorithm to solve the
BTP. Extensive computational results show that our hybrid
algorithm has a performance advantage over the transportation
simplex method and GAMS/CPLEX 12 software on large problem
instances since this hybrid algorithm is free of degeneracy and
cycling altogether.
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In brief, the key contributions of this work are:

� We propose a hybrid algorithm completely free of degeneracy
and cycling.
� The hybrid algorithm is more efficient than the transportation

simplex method.
� The algorithm’s run-time grows, nearly, as a linear function of

problem size.
� We propose two very efficient heuristics for the BTP.
� We present an improved Ford–Fulkerson algorithm for the BTP.

The rest of the paper is organized as follows. In the next section,
a brief literature review of the TP is presented. In Section 3, we
provide some preliminaries and basic assumptions. In Section 4,
the hybrid algorithm is described in detail. Computational
Experiments are reported in Section 5. Section 5 also includes
computational comparison of the proposed algorithm with the
transportation simplex method and the GAMS/CPLEX 12 software.
Finally, Section 6 concludes the paper and presents further
research directions.

2. Literature review

The first statement of the classical TP is due to Hitchcock in a
1941 paper in which he also sketched out a solution procedure
(Hitchcock, 1941). In (Koopmans, 1949) Koopmans independently
investigated and solved the same problem. He also demonstrated
the relationship between basic solutions in the TP and the tree
structure of a graph, thus the problem is referred to as the Hitch-
cock–Koopmans transportation problem. The simplex method for
the linear programming problem was developed by Dantzig
(1951a). Then, he adapted the simplex method to solve the
transportation problem (Dantzig, 1951b). Munkres extended the
Hungarian method to solve the TP (Munkres, 1957). He introduced
a method to find the minimum covering lines in the assignment
problem and extended it to solve the TP. Ford and Fulkerson
(1957) introduced a method to solve the maximal network flow
problem which then they used to solve the TP. Arsham and Khan
(1989) proposed an alternate method to stepping-stone for solving
the TP. The auction algorithm for assignment problem (Bertsekas,
1979, 1988) was generalized to solve the TP by Bertsekas and
Castanon (1989). Orlin (1993) described a strongly polynomial
time algorithm for the general uncapacitated minimum cost flow
problem that can be exploited to solve the TP. By casting the TP
as a slightly different form, Sharma and Sharma (2000) obtained
a dual problem that has a special structure. They exploited that
structure and introduced a heuristic to generate a good starting
solution for dual based approaches that are used for solving the
TP. Sharma and Prasad (2003) introduced a heuristic that uses
the dual solution obtained by Sharma and Sharma (2000) and gives
a good starting solution for the primal transportation problem.
Papamanthou, Paparrizos, and Samaras (2004) presented an
experimental computational study to compare the classical primal
simplex algorithm and the exterior point algorithm for the TP. In
2008, Brenner (2008) presented a new algorithm for the TP with
a worst-case run-time of Oðmn2ðlog mþ n log nÞÞ. Efficient imple-
mentations of minimum-cost flow algorithms are presented in
Kiraly and Kovacs (2012). A comprehensive study of network flow
theory and algorithms can be found in, for example (Korte & Vygen,
2012). A recent survey related to minimum-cost network flow is
presented in Sifaleras (2013). A survey of the many variants of
transportation problem can be found in Díaz-Parra, Ruiz-Vanoye,
Loranca, Fuentes-Penna, and Barrera-Cámara (2014). Kovács
reports that, in general, the primal network simplex and cost-scal-
ing are the most efficient and robust algorithms to solve minimum

cost flow problems. Other methods, though, can outperform them
in particular cases (Kovács, 2014).

Our work aims at developing a new hybrid algorithm, to solve
the BTP, by introducing two greedy heuristics based on a linear
programming relaxation of the BTP model and improving the stan-
dard Ford–Fulkerson method (Dantzig, 1951a). To that end, we first
present three equivalent linear programming models for the BTP
and define the concepts of negative sets, negative dual rectangles,
and the optimal tableau for the BTP. Then, we explore the relation-
ships between these concepts and propose two heuristics to find
some negative sets and negative dual rectangles. Finally, we
present and compare the proposed hybrid algorithm with the
transportation simplex method on 1800 randomly generated
instances with up to 3000 sources and destinations.

3. Preliminaries

In this paper, we assume that the BTP cost matrix is a non-
negative matrix, i.e., C P 0. In this section, we present three
equivalent linear programming models for the BTP and prove five
propositions and three corollaries. Then, we present the definitions
of the First and the Second Type Negative Dual Rectangles followed by
the definitions of the First and the Second Type sets.

Three equivalent linear programming models for the BTP are
presented in Fig. 1 as BTP-1, BTP-2, and BTP-3 models. It is not dif-
ficult to prove the equivalency of these models.

Proposition 1. A BTP tableau is optimal if there is a feasible solution
X ¼ ½xij�m�n such that cij P 0 and cij � xij ¼ 0 for all i, j.

Proof. The proposition is immediate by noting that the objective
value is zero at such a feasible solution. h

Proposition 2. A BTP tableau is optimal if and only if its dual
objective function value is zero.

Proof. This follows from Proposition 1 and the strong duality
theorem of linear programming. h

Proposition 3. If a constant is added to each cost in a row (or
column) of a BTP tableau, then the optimal solution to the problem
is unchanged.

Proof. The proposition is followed immediately by considering
Model BTP-3 (Fig. 1). h

Now, suppose that the BTP is formulated as Model BTP-1
(Fig. 1). Then its dual model, DBTP-1, is given in (1).

Model DBTP-� 1 :

Max w ¼
Xm

i¼1

siui �
Xn

j¼1

djv j

s:t:
ui � v j 6 cij

ui P 0 ði ¼ 1; . . . ;mÞ
v j P 0 ðj ¼ 1; . . . ;nÞ

ð1Þ

Thus, in the remainder of the paper, we assume that (u, v) are the
dual variables.

Proposition 4. If a BTP tableau is not optimal, then there must be
nonnegative numbers u�i and v�j such that:
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