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a b s t r a c t

Recently, for zero ordering cost a new ordering policy named (1, T), in which the time interval between
two consecutive orders and the value of the order size are both constant, have been developed for
nonperishable products. In this paper, the (1, T) policy is developed for perishable products. Using an
analogy among this inventory model, a queueing model with impatient customers, and a finite dam
model, the long-run average total cost function of the inventory system is derived. It is observed that
the total cost rate is independent from the lead time as is for nonperishable products. Since analyzing
the convexity of the model is extremely complicated, a proposition is proved to define a domain for
the optimal solution, and then a search algorithm is presented to obtain the optimal solution.
Furthermore, a numerical analysis is carried out to examine the sensitivity of optimal T with respect
to system parameters and to compare the performance of (1, T) policy with the well known (S�1, S)
policy. This analysis shows that for fixed values of system parameters, there is a fixed value of lead time
for which the performance of (1, T) policy is better than (S�1, S) policy. Further as the lead time increases
this superiority is more pronounced.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Considering nonperishable products, Haji and Haji (2007) intro-
duce a new inventory control policy called (1, T), which is different
from the classical inventory policy used in the literature of inven-
tory and production control systems. The (1, T) policy is to order
one unit at each fixed time period T. For the case of stochastic
demand, the (1, T) inventory policy is the one in which the time
interval between two consecutive orders and the value of the order
size are both constant. Therefore, when (1, T) is employed in the
first level of a supply chain, it prevents expanding the demand
uncertainty for other levels and makes their demand deterministic,
one unit every T units of time. Hence, the following advantages are
obtained using the (1, T) policy in retailers’ level of a supply chain
(Haji and Haji (2007)): (1) The safety stock in supplier is eliminated
(cost reduction). (2) Shortage cost in supplier due to uncertainty in
demand is eliminated. (3) Information exchange cost for supplier
due to the elimination of uncertainty of its demand is eliminated.
(4) Inventory control and production planning in supplier are
simplified. And (5) This policy is very easy to apply. Following
Haji and Haji (2007), Haji, Pirayesh Neghab, and Baboli (2009)
apply the (1, T) policy to a two-echelon inventory system with

nonperishable products. In this paper, we consider the (1, T) policy
for perishable products in a single stage inventory system.

The assumption of infinite lifetime is common in most of the
inventory models. However, the perishability of products is a major
problem of some industry sectors in which by disregarding the finite
lifetime of their products the resulting model may give inaccurate
results. Hence, significant studies have been carried out for inventory
control of perishable products. Nahmias (1982) and Karaesman,
Scheller-Wolf, and Deniz (2011) present two comprehensive reviews
focusing on inventory control of perishable products.

Schmidt and Nahmias (1985) for perishable items consider a sys-
tem operating under (S�1, S) policy with lost sales, Poisson demand,
outdating costs, purchase costs, and per unit per period holding
costs. They derive the cost function by solving partial differential
equations for the S-dimensional stochastic process corresponding
to the time elapsed since the last S orders were placed. Perry and
Posner (1998) generalize Schmidt and Nahmias (1985) to allow for
general types of customer impatience behavior. Olsson and
Tydesjo (2010) extend Schmidt and Nahmias (1985) by allowing
backorders.

In this study, we consider an inventory system under Schmidt
and Nahmias (1985) assumptions but employ the (1, T) policy
instead of the (S�1, S) policy. Using some concepts from queueing
theory, it is shown that the considered model is similar to a D/M/1
queue with impatient customer. The long-run average total cost
function including the total outdating, holding, shortage and
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purchase costs is derived utilizing the analogy of the D/M/1 queue
with impatient customer and the finite dam model. Since analyzing
the convexity of the model is extremely complicated, a proposition
is presented to introduce a domain for optimal T. Therefore, the
optimal solution can be obtained using a search algorithm.

Haji and Haji (2007) prove the independency of the total cost
function of (1, T) policy from the lead time for nonperishable prod-
ucts. In this study, we show that this result is also valid for the case
of perishable products. Further, for the case of perishable products
we have compared (1, T) and (S�1, S) policies. The results show
that for fixed values of system parameters, there is a fixed value
of lead time for which the performance of (1, T) policy is better
than (S�1, S) policy. Furthermore, thorough a numerical example
we show as the lead time increases this superiority is more
pronounced.

The proceeding parts of this paper are organized as follows: In
Section 2, the model and its analogy to other models are described.
In Section 3, the cost function of the model is derived and an algo-
rithm is presented to obtain the optimal solution. In Section 4, a
numerical analysis is carried out. Finally in Section 5, the conclu-
sion is presented.

2. Problem description and mathematical formulation

2.1. Problem description

An inventory system with lost sales, Poisson demand, outdating
costs, purchase costs, and per unit per period holding costs is con-
sidered. Using (1, T) policy in which an order constantly is placed
for one unit of product in each constant time interval, the long-
run average total cost function including the total outdating, hold-
ing, shortage and purchase costs is derived. The objective is to
determine the optimal time interval between any two consecutive
orders which minimizes the long-run average total cost. It is
assumed that the product shelf life is finite and constant, the lead
time for an order is constant, and the fixed ordering cost is zero or
negligible.

General notations

l The demand rate.
p Cost of a lost sale.
h Rate of holding cost.
p Cost of a perished product.
c Unit price.
s Lead time.
m Product shelf life.
T Time interval between any two consecutive orders in

(1, T) policy.
L The long-run average number of units in system.
HC Average holding cost per time unit.
P Average shortage cost per time unit.
OC Average perishing cost per time unit.
PC Average purchase cost per time unit.
C(T) Average total cost rate, for the (1, T) policy.
C(S) Average total cost rate, for the (S�1, S) policy.
wqn The queue waiting time of the nth customer.
sn The required service time of the nth customer.
Wq The random variable of the queue waiting time of an

arriving customer (product) in steady state.
S The random variable of the required service time of a

customer (product) in steady state.
S The random variable of the occurred service time of a

customer (product) in steady state.
Ws A customer (product) average waiting time in the

queueing system in steady state.

2.2. Methodology

To obtain the total cost function of the system, one can resort to
some concepts of queueing theory. To do this, consider a D/M/1
queueing system with impatient customers in which:

(1) The arrival process is the arrival units of product to the
system and the inter-arrival times are constant, equal to T,

(2) The customers’ (product units’) patience time is the product
shelf life. That is, the customer gives up whenever his
sojourn time is larger than m, and

(3) The inter-demand times, exponentially distributed with
mean 1/l, are the required service times of these units.

Hence, the inventory problem can be interpreted as a D/M/1
queue with impatient customers, a single channel queueing system
in which the arrival process is deterministic with rate 1/T, the ser-
vice times have exponential distribution with mean 1/l, and the
customer leaves the system whenever his sojourn time is larger
than m. It is clear that the number of units in this queueing system
is equal to the inventory on hand in the above inventory system.

In the considered queueing system, customers (products) arrive
at the instances 0, T, 2T, . . ., nT, . . . and are served in the order of
their arrival. These customers require service for times s0, s1, . . .,
sn, . . .. A customer will wait in the system only for a time not
exceeding a fixed time m. We number the customers (arriving
units to the inventory system) according to their arrival times,
and define wqn as the waiting time in queue of the nth customer
(product). The following relation can be obtained between wq(n+1)

and wqn using a manner similar to that of Lindley (1952).

wqðnþ1Þ ¼
0 if wqn þ sn � T

wqn þ sn � T if T < wqn þ sn < m

m� T if m � wqn þ sn

8><
>: ; n ¼ 0;1; . . .

or equivalently

wqðnþ1Þ ¼ ½wqn þminðsn;m�wqnÞ � T�þ

¼ ½minðwqn þ sn;mÞ � T�þ ; n ¼ 0;1; . . . ð1Þ

where [x]+ = max (0, x). Thus, the sequence of {wqn} forms a Markov
chain with the state space [0, m � T].

The probability of a product perishing is Pr(S + Wq > m). Hence,
to estimate the perishing costs, we have to obtain the distribution
function of Wq.Define Fn(x) = Pr(Wqn 6 x) as the distribution
function of Wqn, and let F(x) = limn?1Fn(x) when the limit exists.
To obtain F(x), we use the analogy of the finite dam model and
D/M/1 queues with impatient customers.

2.3. The finite dam model

Daley (1964) clarifies the analogy of the queueing system with
impatient customers and the finite dam model. Assume a dam with
finite capacity m, and consider its storage Zt for discrete time t = 0,
1, 2, . . .. Suppose in the interval (t, t + 1), an amount of Xt flows into
the dam, filling it to the level of min (Zt + Xt, m) and any excess
water being lost over the spillway. A fixed demand for an amount
T occurs just before the instant t + 1, and is met as fully as possible
by the release of the quantity min[T, min(Zt + Xt, m)] = min(T, Zt +
Xt, m). Thus an amount Zt+1 leaves in the dam, where

Ztþ1 ¼minðZt þ Xt ;mÞ �minðT; Zt þ Xt ;mÞ )
Ztþ1 ¼ ½minðZt þ Xt ;mÞ � T�þ

ð2Þ

If {Xt} is assumed to be a sequence of independent non-negative
random variables from an exponential distribution with parameter
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