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a b s t r a c t

Recent advances in state-of-the-art meta-heuristics feature the incorporation of probabilistic operators
aiming to diversify search directions or to escape from being trapped in local optima. This feature would
result in non-deterministic output in solutions that vary from one run to another of a meta-heuristic.
Consequently, both the average and variation of outputs over multiple runs have to be considered in eval-
uating performances of different configurations of a meta-heuristic or distinct meta-heuristics. To this
end, this work considers each algorithm as a decision-making unit (DMU) and develops robust data
envelopment analysis (DEA) models taking into account not only average but also standard deviation
of an algorithm’s output for evaluating relative efficiencies of a set of algorithms. The robust DEA models
describe uncertain output using an uncertainty set, and aim to maximize a DMU’s worst-case relative
efficiency with respect to that uncertainty set. The proposed models are employed to evaluate a set of
distinct configurations of a genetic algorithm and a set of parameter settings of a simulated annealing
heuristic. Evaluation results demonstrate that the robust DEA models are able to identify efficient algo-
rithmic configurations. The proposed models contribute not only to the evaluation of meta-heuristics but
also to the DEA methodology.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

This work focuses on determining relative efficiencies of a set of
algorithmic configurations of a meta-heuristic or a set of different
meta-heuristics for solving combinatorial optimization problems.
Typically, a meta-heuristic consists of several algorithmic opera-
tors, each of which may be implemented in a number of distinct
ways, thus resulting in various configurations (or combinations)
with different performances. Comparing various combinations
and identifying the most efficient one(s) are the critical tasks at
the final stage of developing a meta-heuristic.

In the literature, the most commonly-used method is the
empirical analysis which involves an extensive set of paired-t tests
for comparing average algorithmic performances with respect to a
number of criteria (such as computational time, objective values,
robustness, and flexibility) on a wide range of problem instances
(Bräysy & Gendreau, 2005a,b). More sophisticated methods may
be based on the Design of Experiments (DOE) and Analysis of Var-
iance (ANOVA), e.g., Coy (2000), Francois and Lavergne (2001),
Rardin and Uzsoy (2001), Bartz-Beielstein (2006), Ruiz, Maroto,

and Alcaraz (2006), Birattari (2009). While these methods help to
decide best configurations, experimental design should be ideally
and carefully used on a number of combinations of algorithmic
operators, to arrive at conclusions that have meaning in a statisti-
cal sense. Inevitably, the complexity of making the decision based
on the empirical analysis increases dramatically with the numbers
of distinct operators, parameters values, and evaluation criteria,
mainly due to a large number of paired-t tests. Furthermore, since
ANOVA is parametric, when using the DOE with ANOVA, we have
to check the three main hypotheses, which are normality, hom-
oskedasticity, and independence of residuals; this is generally not
a simple task. As also pointed out by Ruiz et al. (2006), the result-
ing ANOVA has many degrees of freedom; one has to be very care-
ful when analyzing results of an experiment with such large
sample sizes. In solving the meta-heuristics tuning problem, which
aims to determine the best configuration of a meta-heuristic,
Birattari (2009) proposed the F-Race algorithm, which adopts the
Friedman two-way ANOVA in the racing algorithm inspired by
Hoeffding race, introduced by Maron and Moore (1994), for solving
the model selection problem in machine learning. Although this
approach is statistically sound, it is computationally intensive
and still has to satisfy the hypotheses of ANOVA.

To avoid the hassles of using the above empirical analysis
methods, Lu and Yu (2012) proposed an alternative that adopted
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data envelopment analysis (or DEA; e.g., Amin & Toloo, 2007;
Banker, Charnes, & Cooper, 1984; Charnes, Cooper, & Rhodes,
1978; Toloo, 2012, 2013, 2014a,b; Toloo & Nalchigar, 2009) to eval-
uate relative efficiencies of a set of combinations of the genetic
algorithm (GA) operators (i.e., selection, crossover and mutation)
for solving the pickup and delivery vehicle routing problem with
soft time windows (PDVRPSTW). In this approach, each possible
combination of GA operators was considered as a decision making
unit (DMU), and DEA was adopted to evaluate and compare the
algorithmic efficiency of the distinct GA combinations under con-
sideration. In addition, the cross-efficiency (CE) method (e.g.,
Doyle & Green, 1994) was employed to rank the combinations.
The numerical results showed that DEA is well-suited for deter-
mining efficient combinations of GA operators (Lu & Wu, 2014).

While DEA represents a promising alternative for evaluating
relative efficiencies of algorithms, one of its limitations is that
input and output data of DMUs which are used as the coefficients
in the corresponding linear programs (LPs) have to be precisely-
known, a priori (Toloo & Nalchigar, 2011). This limitation may
affect the efficiency evaluation of some state-of-the-art meta-heu-
ristics that incorporate probabilistic operators with the aim to
diversify search directions or to escape from being trapped in local
optima. For example, GAs include a mutation rate that controls the
probability of applying a mutation operator to chromosomes; sim-
ulated annealing (SA) approaches use Cauchy or Boltzmann func-
tions (e.g., Lin, Lee, Lu, & Ying, 2011; Lin, Yu, & Lu, 2011; Ying,
Lin, & Lu, 2011) in the annealing process to determine the probabil-
ity of replacing current solution with a worse solution. In this type
of meta-heuristics, incorporating probabilistic operators would
result in non-deterministic or uncertain output in solutions that
vary from one run to another. Consequently, both the average
and variation of outputs over multiple runs have to be considered
in evaluating algorithmic efficiency.

Previous research on DEA models with imprecise data may be
classified into three main categories, namely, fuzzy DEA, interval
DEA, and robust DEA. In the fuzzy DEA approach, Sengupta
(1992) presented a fuzzy LP transformation to deal with DEA mod-
els with fuzzy input and output data. Based on the a-cut approach,
Kao and Liu (2000) proposed a transformation of a fuzzy DEA
model into a family of crisp DEA models, while Guo and Tanaka
(2001) introduced an approach that changed a fuzzy DEA model
to a bi-level LP model. Some other examples of fuzzy DEA models
can be found in Soleimani-damaneh, Jahanshahloo, and
Abbasbandy (2006) and Liu (2008). A common shortcoming of
the fuzzy DEA approach is that fuzzy DEA models are computation-
ally expensive (Soleimani-damaneh et al., 2006).

In the interval DEA approach, input and output values are
selected from their respective intervals with prescribed lower
and upper bounds so as to maximize a DMU’s relative efficiency
score. Because both the input and output data and weights are
variables, the interval DEA approach results in nonlinear programs
(NLP). Cooper, Park, and Yu (1999) developed an interval approach
that permits mixtures of imprecise and precise data. To deal with
the nonlinear interval DEA model, they proposed a two-stage
transformation that involves scale transformations and variable
alternations to transform the interval DEA model into an ordinary
linear program. Despotis and Smirlis (2002) defined the upper and
lower bounds for the efficiency scores of the DMUs, and proposed
transformations of nonlinear interval DEA models to LP equiva-
lents. They also used a post-DEA model and the endurance indices
to discriminate among the efficient DMUs. Some other examples of
interval DEA models can be found in Entani, Maeda, and Tanaka
(2002), Kao (2006), and Toloo and Ertay (2014). In the interval
DEA approach, some DMUs may be always efficient or inefficient
for any combinations of values within given intervals, while others
may be either efficient or inefficient depending on the values

assigned. Moreover, the DMUs are no longer represented by points
in the hyper-plane, and instead a number of efficient frontiers may
exist. The efficiency of the DMUs may vary according to the effi-
ciency frontier selected.

The robust DEA approach is based on the robust counterpart
optimization (RCO) approach (e.g., Ben-Tal & Nemirovski, 1999;
Bertsimas & Sim, 2004) which describes uncertain data using an
uncertainty set, and aims to maximize a DMU’s worst-case relative
efficiency with respect to that uncertainty set. Sadjadi and Omrani
(2008) proposed robust DEA models with consideration of uncer-
tainty on output parameters for the performance assessment of
electricity distribution companies. Shokouhi, Hatami-Marbini,
Tavana, and Saati (2010) developed robust DEA models which con-
sider uncertainty on both input and output parameters. Note that
both of the works focused on the adaptation of Bertsimas and Sim’s
(2004) approach to the CCR model (Charnes et al., 1978). More
recently, Sadjadi, Omrani, Abdollahzadeh, Alinaghian, and
Mohammadi (2011) applied the RCO approach of Ben-Tal and
Nemirovski (1999) to the super-efficiency DEA model of
Andersen and Petersen (1993), which was also based on the CCR
model.

To take into account the aforementioned output uncertainties
(due to probabilistic operators) in using DEA models to evaluate
algorithmic efficiency, this research develops two robust DEA mod-
els which take into account not only the average but also standard
deviation of algorithm’s output values. Particularly, our work
adapts the RCO approach to the BCC model (Banker et al., 1984),
which allows variable returns-to-scale (VRS) on production fron-
tiers, whereas previous robust DEA approaches were based on
the CCR model, which assumes constant returns-to-scale (CRS).
The BCC model has seen a wider use than the CCR model, because
the former was built based on the more general assumption, VRS.
As a result, the proposed robust BCC models should receive greater
attention than the robust CCR models presented in the literature
(Sadjadi and Omrani, 2008; Sadjadi, Omrani, Abdollahzadeh,
Alinaghian, and Mohammadi, 2011; Shokouhi et al., 2010). More-
over, this research represents the first to develop robust BCC mod-
els using distinct RCO techniques in the literature (i.e., Bertsimas &
Sim, 2004; Ben-Tal & Nemirovski, 1999) and compared their
results in algorithmic efficiency evaluation.

Using the same test dataset and GA algorithms provided by Lu
and Yu (2012), we demonstrate the application of the robust DEA
models to evaluate a set of GA algorithms for solving the
PDVRPSTW. Additionally, the proposed models are applied to
evaluate a set of parameter settings of a simulated annealing
(SA) heuristic developed for solving the truck and trailer routing
problem with time windows (Lin, Yu, et al., 2011; Lin, Lee, et al.,
2011). To verify its effectiveness, the proposed approach is com-
pared with the conventional empirical analysis method based on
paired-t tests. It is important to note that a large number of
paired-t tests have to be conducted, if the empirical analysis
method is employed to determine the efficient combinations of
GA operators or the efficient SA parameter settings. Furthermore,
the solution variation among different runs of GA and SA due to
the probabilistic feature in the mutation operator would add
more complexity to the empirical analysis approach. Instead, by
applying the proposed robust DEA models, which explicitly
address (output) coefficient uncertainties in the BCC model, the
relative efficiency of each algorithmic configuration can be easily
determined.

The rest of this paper is structured as follows. Section 2
describes the robust DEA models for evaluating the relative effi-
ciency of a set of algorithmic combinations. Section 3 presents
the applications of the robust DEA models to evaluate a number
of combinations of GA operators and a set of SA parameter settings.
Concluding remarks are in Section 4.
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