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a b s t r a c t

One of the primary issues on data envelopment analysis (DEA) models is the reduction of weights
flexibility. There are literally several studies to determine common weights in DEA but none of them con-
siders uncertainty in data. This paper introduces a robust optimization approach to find common weights
in DEA with uncertain data. The uncertainty is considered in both inputs and outputs and a suitable
robust counterpart of DEA model is developed. The proposed robust DEA model is solved and the ideal
solution is found for each decision making units (DMUs). Then, the common weights are found for all
DMUs by utilizing the goal programming technique. To illustrate the performance of the proposed model,
a numerical example is solved. Also, the proposed model of this paper is implemented by using some
actual data from provincial gas companies in Iran.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

DEA was introduced by Charnes, Cooper, and Rhodes (1978) to
estimate the efficiency scores of the DMUs. The original DEA model
was named as DEA-CCR to honor the authors. DEA is a well known
performance assessment model to calculate the relative efficiency
of homogeneous DMUs that use the similar inputs and outputs. In
DEA, to calculate the relative efficiency scores, a linear program-
ming model is separately executed for each DMU. Therefore, each
unit is free to set its weights to reach the efficient frontier. Several
researchers have studied weights and proposed various models to
restrict flexibility in input and output weights. The latter models
are classified as weight restriction models (Dyson & Thanassoulis,
1988), assurance region models (Thompson, Langemeier, Lee, &
Thrall, 1990), cone ratio models (Charnes, Cooper, Huang, & Sun,
1990) and common weights models (Kao & Hung, 2005). Common
weights models were first introduced by Roll, Cook, and Golany
(1991) and then were developed by Kao and Hung (2005), Kao
(2010), and Zohrehbandian, Makui, and Alinezhad (2010). In com-
mon weights models, no flexibility is allowed and all DMUs are
ranked by the same weights. The DEA model allows the DMUs to
select the input–output weights to try to reach the efficiency fron-
tier. This is the strength and weakness of the DEA model. If a DMU
cannot be placed on frontier by selecting free weights for inputs
and outputs, the inefficiency of DMU is very meaningful. Unlike,
it is possible for the different DMUs to select very small weights

(close to zero) for the inputs and outputs which will not be accept-
able for the decision maker. In addition, various DMUs tend to give
very different weights to similar inputs and outputs. To avoid these
problems and to find out the common weights, Kao and Hung
(2005) proposed a common weight DEA (CWDEA) model. The pro-
posed DEA model was a nonlinear programming model which cal-
culated the efficiency scores through using the common weights.

Trough a compromise solution approach, Makui, Alinezhad,
Kiani Mavi, and Zohrehbandian (2008), and Zohrehbandian et al.
(2010) improved Kao and Hung (2005) model and showed that
the efficiency scores obtained from two approaches had high cor-
relation. The latter models are linear and they calculate common
weights by using the goal programming technique.

The previous common weight DEA models assume that there is
no uncertainty in input–output data. In real world applications, it
is almost impossible to have accurate data for the inputs and out-
puts (Sadjadi & Omrani, 2010). Therefore, to reach reliable results,
it is necessary to consider the perturbation in data. There are many
approaches for handling uncertain data in DEA model which can be
classified as chance constraint DEA (CCDEA), imprecise DEA (IDEA),
bootstrap DEA, fuzzy DEA and robust DEA (RDEA). The CCDEA was
developed based on chance constraints approach and it assumes
that the data have the stochastic nature and the probability distri-
bution function of the data is known. In this approach, the DEA
constraints are considered as chance constraints and finally, the
DEA is transferred to a deterministic model and the latter model
is solved by the quadratic programming technique. It is notewor-
thy that when we consider different probability distribution func-
tions for data, we usually get different efficiency scores. However,
it is difficult to find out a suitable distribution function for the data
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(Cooper, Deng, Huang, & Li, 2002; Land, Lovell, & Thore, 1993;
Olesen & Petersen, 1995). In IDEA approach, originally developed
by Cooper, Park, and Yu (1999), different ranges and bounds are
considered for input and output data and since the data are spec-
ified in the form of different ranges, the estimated efficiency scores
are also interval. In addition, in this case, the DEA model is changed
to a nonlinear programming where it may be difficult to find out
the optimal solution. In the bootstrap DEA, the confidence interval
for efficiency scores is constructed. In this approach, it is assumed
that there is a potentially infinite population of units correspond-
ing to a data generating process and the current set is simply a
sample of the population. Therefore, the bootstrap technique is ap-
plied for re-sampling and re-producing the new units. The boot-
strap DEA was extended by Simar and Wilson (1998), Simar and
Wilson (2000). Another way of modeling uncertainty in the data
is considering the input and the output values as fuzzy numbers.
Sengupta (1992) was first who introduced fuzzy DEA with fuzzy
objective function and constraints. Kao and Liu (2000) estimated
the fuzzy efficiency scores by using the membership function of
fuzzy degrees of efficiency. Guo and Tanaka (2001) developed a
fuzzy DEA model with symmetrical triangular fuzzy numbers. They
applied the a-cut technique on the constraints and calculated the
efficiency scores. For more details about fuzzy DEA the readers
can see Wen and Li (2009). In this paper, a robust optimization ap-
proach is proposed to incorporate the uncertainty associated with
the data. Robust optimization is an alternative for the stochastic
programming and sensitivity analysis. Robust optimization en-
sures that a planning constraint is violated through a very low
probability given by the decision/design vector. Robust optimiza-
tion was originally introduced by Soyster (1973) and later it was
extended based on the studies of Ben-Tal and Nemirovski (1998),
Ben-Tal and Nemirovski (1999, Ben-Tal and Nemirovski (2000),
Bertsimas and Sim (2003), Bertsimas and Sim (2004, Bertsimas
and Sim (2006), and Bertsimas, Pachamanova, and Sim (2004). This
technique is used to model optimization problems with data
uncertainty to obtain a solution that is guaranteed to be good for
all or most possible realizations of the uncertain parameters.
Ben-Tal and Nemirovski (1998), Ben-Tal and Nemirovski (1999,
Ben-Tal and Nemirovski (2000), El-Ghaoui and Lebret (1997), and
El-Ghaoui, Oustry, and Lebret (1998) have introduced a new idea
for modeling the uncertainty in data based on ellipsoidal uncer-
tainty sets. Also, Bertsimas and Sim (2004) proposed a robust opti-
mization approach based on polyhedral uncertainty sets which
preserves the class of problems under analysis. Sadjadi and Omrani
(2008) developed a robust DEA model and suggested a new formu-
lation of DEA which is suitable in the uncertainty environments.
Also, they showed that the robust DEA (RDEA) based on Bertsimas
and Sim (2004) is easier to solve compared to the robust DEA based
on Ben-Tal and Nemirovski (2000) approach. In RDEA, the data are
assumed to be uncertain and the probability distribution function
of the data is unknown. In summary, if available data have no sto-
chastic nature and the probability distribution function for data
not to be clear, the RDEA model will be recommended.

As mentioned above, in DEA model the DMUs are free to select
the input–output weights to attempt reaching the efficient frontier.
However, in several cases, top manager and decision maker want to
evaluate DMUs by using the common set of weights for the inputs
and outputs. For example, in the banking industry, the general man-
ager would like to measure the performance assessment of the
branches by using the common weights. The objective of this paper
is to seek a common set of weights to create the best efficiency
score of the DMUs. Also, it is assumed that there is uncertainty in
input and output data. Since the data do not have stochastic nature
or it is difficult to find out a suitable probability distribution func-
tion, the robust optimization approach is suitable for dealing with
uncertainty in data. If uncertainties are not considered in the data,

then the DEA constraints will not be immune against violation and
the ranks and efficiency scores will not be reliable, too (Wang &
Wei, 2010). Unfortunately, there is an equality constraint in the
multiplier DEA-CCR model that allows no uncertainty considered
in inputs. Hence, this paper introduces an appropriate DEA model
with inequality constraints which can consider the uncertainty in
both inputs and outputs. Therefore, the final purpose of the paper
is to find out the common set ofweights with considering uncer-
tainty in data. This common set of weights is applied to evaluate
the absolute efficiency of each efficient DMUs in order to rank them.
Briefly, in this paper, first an appropriate RDEA model is developed
and the efficiency score is calculated for each DMU. The recent
scores are considered as the ideal solution. Then, the goal program-
ming approach is used to minimize the amount of deviation from
the ideal solution of the RDEA model.

The rest of this paper is organized as follows: First, the robust
optimization technique is presented in Section 2. In Sections 3,
the counterpart robust of common weight DEA model and the goal
programming approach to find out the common weights are pro-
posed. In Section 4, a numerical example based on data used by
Kao and Hung (2005) is solved. Then, the common weights for
the provincial gas companies in Iran are found in Section 5. Finally,
the conclusion remarks of the paper are given in Section 6 to sum-
marize the contribution of the paper.

2. Robust optimization

In this section, the robust optimization approach, an alternative
for the stochastic programming and sensitivity analysis, will be ex-
plained. In robust optimization, the consideration is to ensure that
a planning constraint is violated through a very low probability gi-
ven by the decision/design vector. To present the robust modeling,
consider the following LP problem:

minimize c0x
subject to :

Ex ¼ d

Ax P b

x 2 X

ð1Þ

In the model (1), c0 is the row vector of the corresponding costs, and
x is the column vector of variables. The constraints are separated
into two parts: equality and inequality constraints. E and A are
the coefficient matrices of the equality and inequality constraints,
respectively. Also, d and b are the column vectors of right-hand side
values of the equality and inequality constraints, respectively. It is
assumed that the coefficients in A are uncertain and X is a polyhe-
dron. In robust optimization technique, consider a particular row
i(i = 1, . . . , m) of the matrix A and let Ji represents the set of coeffi-
cients in the row i that are subject to uncertainty. Assume that the
true values ~aijðj ¼ 1; . . . ;nÞ of uncertain data entries in ith inequality
constraint are obtained from the nominal values aij of the entries by
random perturbations:

~aij ¼ ð1þ eijfijÞaij ¼ aij þ fijâij ð2Þ

where eij > 0 is a given uncertainty level (percentage of perturba-
tion) and âij measures the precision of the estimation. Also, fij

(fij = 0 for j R Jj) is the scaled deviation from nominal value and
has an unknown but symmetric distribution which takes values in
[�1,1]. Therefore, each entry ~aij; j 2 Ji is modeled as a symmetric
and bounded random variable which takes values in
½aij � âij; aij þ âij�. Although the aggregated scaled deviation for con-
straint i could take any value between �ni and ni, but it is limited toPn

j¼1fij 6 Ci;8i. Therefore, for each constraint i, a parameter Ci, not
necessarily integer, is introduced taking values in the interval [0, ni]

1164 H. Omrani / Computers & Industrial Engineering 66 (2013) 1163–1170



Download English Version:

https://daneshyari.com/en/article/1133868

Download Persian Version:

https://daneshyari.com/article/1133868

Daneshyari.com

https://daneshyari.com/en/article/1133868
https://daneshyari.com/article/1133868
https://daneshyari.com

