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a b s t r a c t

In this paper, we present an improved general methodology including four stages to design robust and
reliable products under uncertainties. First, as the formulation stage, we consider reliability and robust-
ness simultaneously to propose the new formulation of reliability-based robust design optimization
(RBRDO) problems. In order to generate reliable and robust Pareto-optimal solutions, the combination
of genetic algorithm with reliability assessment loop based on the performance measure approach is
applied as the second stage. Next, we develop two criteria to select a solution from obtained Pareto-
optimal set to achieve the best possible implementation. Finally, the result verification is performed with
Monte Carlo Simulations and also the quality improvement during manufacturing process is considered
by identifying and controlling the critical variables. The effectiveness and applicability of this new
proposed methodology is demonstrated through a case study.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Quality and reliability improvement through variation reduc-
tion can prepare a solid ground for manufacturing and service pro-
cesses, leading to a competitive advantage. In order to achieve a
desirable and reliable product, we need to consider it necessary
to improve the system performance. The majority of quality
improvement attempts concentrate on improving quality during
manufacturing process. However, it is obvious that when quality
and reliability are designed for a product, the product performance
improves significantly. An effective approach is to use optimization
techniques in order to determine the optimal design settings to
reduce the costs while maintaining the desired performance.
Although deterministic optimization techniques have been used
successfully in many areas of the engineering design, undesired
results should be expected when uncertainties in design variables
and/or modeling parameters are not taken into account. As we
approach the limits of one or more of the design settings in deter-
ministic design optimization (DDO) approach, design optimality
becomes unreliable, leading to product failure. In recent years, dif-
ferent approaches have been developed to investigate the effect of
uncertainties. Among these approaches, reliability-based design
optimization (RBDO) (see for example, Fang, Gao, Sun, & Li, 2013;
Sinha, 2007; Valdebenito & Schuëller, 2011; Yao, Chen, Huang, &

Tooren, 2013; Youn, Choi, Yang, & Gu, 2004) and robust design
optimization (RDO) approaches (Beyer & Sendhoff, 2007; Shin,
Samanlioglu, Cho, & Wiecek, 2011; Taguchi, 1993) are effective
tools to incorporate uncertainties in the design. RBDO achieves
the target confidence of product reliability, while RDO minimizes
the quality loss of the product.

Since the individual application of RDO and RBDO does not
ensure the quality and reliability of a product during its life cycle,
their concepts are combined in RBRDO (see for example, Du,
Sudjianto, & Chen, 2004; Lee, Choi, Du, & Gorsich, 2008; Rathod,
Yadav, Rathore, & Jain, 2013; Yadav, Bhamare, & Rathore, 2010;
Youn, Choi, & Yi, 2005). We use this integration to propose a gen-
eral methodology to design robust and reliable products effec-
tively. Our methodology is composed of four stages: formulation,
optimization, selection, and evaluation. In the first two stages,
the problem is formulated based on RBRDO to simultaneously con-
sider the reliability and robustness and also genetic algorithm (GA)
is used to find the reliable and robust Pareto-optimal solutions.
Next, the best solutions are chosen for implementation using some
defined criteria. Then, the results are evaluated using Monte Carlo
simulations (MCS) and critical variables, which should be con-
trolled during manufacturing process, are identified.

Baril, Yacout, and Clément (2011) proposed a methodology to
design robust products under some limitations. First, the use of
worst-case analysis, which assumes that all changes may simulta-
neously occur in the worst possible combinations, has some pitfalls
(Du & Chen, 2000). Second, it is required to simultaneously
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optimize the mean and the variance of the performance functions
(quality characteristics) in the objective functions. Furthermore,
when more than one performance function is used, the corre-
sponding correlation structure should be considered. Our
improved methodology overcomes the pitfalls of the available
one. Worst-case analysis is replaced with probabilistic feasibility
formulation. We consider both mean and variation of performance
functions in the objective function. Moreover, the presence of more
than one quality characteristic and the corresponding correlation
are considered using mean-squared error (MSE) as the objective
function.

Section 2 presents design optimization approaches under
uncertainties and different methods considered to solve multi-
objective optimization problems. Our general methodology is
explained in Section 3. Section 4 presents an applicable example
solved using the proposed methodology. Our concluding remarks
are provided in the final section.

2. Literature review

2.1. Design optimization approaches under uncertainties

This section provides an overview of the approaches commonly
used for design optimization under uncertainty.

2.1.1. Robust design optimization
Robust design proposed by Taguchi (1993) can help one to

improve the quality of a product by optimizing the mean and min-
imizing the performance variance. A product designed using robust
design concept should be insensitive to uncertainties. The review
paper by Park and Lee (2006) gives a thorough discussion of robust
design. In RDO, the robustness concept is added to conventional
optimization problem that can be formulated as follows:

Min f ðdÞ
S:t : gjðdÞ 6 0 j ¼ 1; . . . ; J

dL
6 d 6 dU

8><
>: ð1Þ

where d, dL, dU are the vectors of deterministic design variables,
their lower and upper bounds, respectively, f is the performance
function, and gj is the jth constraint function. When uncertainties
in design variables and design parameters are considered, the
objective and constraint functions are modified as f(d) ? f(d, X,
P), gj(d) ? gj(d, X, P) and then, RDO is stated as follows (Park &
Lee, 2006):

Min �f ðd;X;PÞ
S:t : �gjðd;X;PÞ 6 0 j ¼ 1; . . . ; J

dL
6 d 6 dU

8><
>: ð2Þ

In the above model, �f , the objective function and �gj , the jth con-
straint function, are functions of the probabilistic characteristics of
the modified performance function f and g, respectively. The prob-
abilistic characteristic could include the mean, the standard devia-
tion or the combination of both. d and X are the vectors of
deterministic and random design variables, respectively. P is the
vector of random design parameters. A design variable (whether
deterministic or random) is changeable and controllable by a
designer in a design process while a design parameter is not. The
decision variables are d and the mean of random design variables
X. In this paper, bold letters are used for vectors, capital letters for
random variables and parameters, and lower case letters for deter-
ministic variables.

The main concern of RDO is how accurately and efficiently the
statistical moments of the performance function can be estimated.
The commonly used methods to evaluate these moments are

numerical integration, analytical methods, and simulation meth-
ods. Because of their shortcomings, other approximation methods
such as univariate dimension reduction method (DRM), perfor-
mance moment integration (PMI), and percentile difference
method (PDM) have been recently proposed to estimate the
moments. Lee et al. (2008) investigated the efficiency and accuracy
of DRM, PMI, and PDM methods. Moreover, Youn et al. (2005) used
PMI in some examples to determine statistical moments and its
efficiency had been shown for even non-normal distributed statis-
tical responses with high skewness and kurtosis. In this paper, PMI
will be used to determine the first and second statistical moments.

Design feasibility in the presence of variability and uncertainty
is another concern in RDO. Different approaches to consider design
feasibility under uncertainties are classified into methods which
require probability and statistical analyses and methods that do
not (Du & Chen, 2000). The former methods, which ensure that
the solution achieves an accurate level of constraint satisfaction,
are the best way to describe the feasibility robustness, although
evaluating the probability of constraint satisfaction may have some
computational difficulties. The following section provides the
detailed discussion on RBDO in which the probabilistic feasibility
formulation is used to consider uncertainties in the design vari-
ables and parameters.

2.1.2. Reliability-based design optimization
RBDO is a method to obtain optimal designs where the proba-

bility of failure is low. If gj(d) 6 c is considered to be the jth deter-
ministic constraint, the probabilistic feasibility formulation in the
presence of uncertainty (random variables X and random parame-
ters P) is shown as follows.

P½Gjðd;X;PÞ 6 0�P Rj j ¼ 1; . . . ; J ð3Þ

where Gj(d, X, P) = gj(d, X, P)-c is the jth constraint function. c and Rj

are the limiting value and the probability of satisfying this con-
straint (reliability level), respectively.

When the statistical distribution of all random design variables
and parameters is known, the probability is computed based on the
following integral:

P½Gjðd;X;PÞ 6 0� ¼
Z

. . .

Z
Gjðd;X;PÞ60

fX;Pðx;pÞdxdp ð4Þ

where fX,P(x, p) is a joint probability density function of X and P.
However, most of the time it is practically difficult or impossible
to calculate the numerical solution for the above equation. Hence,
approximate procedures have been proposed to estimate this prob-
ability accurately and efficiently. One alternative procedure is to use
sampling methods such as MCS, Latin hypercube sampling, impor-
tance sampling, most probable point (MPP) based importance sam-
pling or directional sampling (Dubourg, Sudret, & Deheeger, 2013;
Padmanabhan, Agarwal, Renaud, & Batill, 2006; Rashki, Miri, &
Azhdary Moghaddam, 2012). However, when the desired probabil-
ity of failure (1 � Rj) is low, the computational effort of sampling
methods is prohibitively expensive (Du & Chen, 2001). Another
alternative procedure is optimization-based methods (e.g. first
and second order reliability methods (FORM/SORM)) which are
based on linear (FORM) or quadratic (SORM) approximation of the
constraint boundary at an MPP, to ensure minimal accuracy loss
(Agarwal, 2004).

The main concept of the later class of reliability assessment
methods is to determine MPP which was first introduced in the
structural analysis (Hasofer & Lind, 1974). The first step to com-
pute the MPP is to transform the original random variables and
parameters (X, P) in original space into standard normal variables
and parameters (UX, UP) in U-space (the independent and stan-
dardized normal space) using Rosenblatt transformation
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