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a b s t r a c t

In location problems for the public sector such as emergency medical service (EMS) systems, the issue of
equity is an important factor for facility design. Several measures have been proposed to minimize ineq-
uity of a system. This paper considers an extension to the minimum p-envy location model by evaluating
the objective of the model based on a survival function instead of on a distance function since survival
probability is directly related to patient outcomes with a constraint on minimum survival rate. The model
was tested on a real world data set from the EMS system at Hanover County, VA, and also compared to
other location models. The results indicate that, not only does the enhanced p-envy model reduce ineq-
uity but we also find that more lives can be saved by using the survival function objective. A sensitivity
analysis on different quality of service measures (survival probability and traveled distance) and different
choices of priority assigned to serving facility is discussed.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Emergency medical service (EMS) is a public service that
involves life-or-death situations which often require immediate
medical assistance. The EMS system is designed to be able to
respond to a 911 emergency call to provide urgent medical treat-
ment and/or transport. The system is activated by an emergency
call, and then the EMS center dispatches the appropriate medical
units to the call. Most EMS systems’ performance is measured by
the percentage of calls responded to (covered) within some fixed
time standard, known as the response time threshold (RTT). Ide-
ally, a system should be able to respond to a call within the RTT.
However, it may not be possible to deliver care within the RTT
for all customers; people who live in remote areas usually have
to wait longer. For example, Fitch (2005) notes that 90% of calls
in urban areas should be responded to within a 9 min RTT while
90% of calls in rural areas should be responded to within 15 min.
Moreover, when considering coverage, there is no practical differ-
ence between a call responded to within 1 min and 8 min and 59 s.
This is not reflective of patient outcomes; for example, patients
who have cardiac arrest need help within 6 min otherwise; brain
damage is likely to occur (Mayer, 1980).

Since EMS systems provide important life-saving services, they
are expected to serve the public fairly. A patient’s chance of receiv-
ing timely service is directly affected by the locations and availabil-
ity of service facilities. Many performance measures in facility
location models have been introduced to equalize the chance of
access to service between customers. Typically, the objective of
these models is to minimize inequity of the system in terms of dis-
tance, or to minimize the variation of the distances between
demand locations and facilities that serve them. The standard sta-
tistical dispersion measures that are used as inequity measures
for equitably locating facilities include range (see e.g. Brill,
Liebman, & ReVelle, 1976; Erkut & Neuman, 1992), variance (see
e.g. Berman, 1990; Maimon, 1986; Kincaid & Maimon, 1989), mean
absolute deviation (see e.g. Berman & Kaplan, 1990; Mulligan,
1991), and sum of absolute differences (see e.g. Keeney, 1980;
Lopez-de-los-Mozos & Mesa, 2001, 2003). Moreover, the Gini coef-
ficient, which is commonly used to measure inequity of income, has
been widely used in the field of equitable facility location design
(Drezner, Drezner, & Guyse, 2009; Erkut, 1993; Maimon, 1988).
For a review of measures for equity in facility location, see Marsh
and Schilling (1994).

In this paper, we apply the concept of envy as one way to cap-
ture inequity of the system. The minimum envy model was first
introduced in location problems by Espejo, Marin, Puerto, and
Rodriguez-Chia (2009). Envy is a measure that considers the differ-
ences in service quality between all possible pairs of customers.
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Since people feel no dissatisfaction when they are better off than
others, only negative effects are considered in the minimum envy
model. Unlike other measures, the envy measure takes into
account all individual effects compared with each other which
results in overall satisfaction to the whole system. To say that
one customer is better than another customer, we need to define
a standard way to quantify the dissatisfaction of each individual
which can be done in several ways. Most location models included
in Espejo et al.’s (2009) work considers customers’ dissatisfaction
based on the distance from the customers’ locations to their closest
facilities, assuming that all customers are only serviced by their
closest facilities. This representation is appropriate for some public
services, such as post office locations or school locations where the
customer travels to the facility, but not necessarily for EMS sys-
tems. In an EMS system, the ambulance stationed at the closest
facility is not always available to serve the customers, and in that
case the ambulance stationed at the next closest facility might
instead be dispatched.

To take this into account Chanta, Mayorga, Kurz, and McLay
(2011) developed the minimum p-envy model which defines dis-
satisfaction of customer in zone i as a function of distance from
zone i to all p serving facility locations weighted by priority of
the serving stations. In this paper, we propose an enhancement
to the p-envy model presented in Chanta et al. (2011) which
focuses more directly on patient outcomes. We redefine envy as
differences of customers’ satisfaction between zones (as opposed
to dissatisfaction), and we consider satisfaction as measured by
the survival probability of each demand zone (as opposed to
distance from a station), which more accurately reflects patient
outcomes. The differences of calculating envy based on dissatisfac-
tion or satisfaction is presented along with a study of assignment
of priority weights to the p serving stations. Moreover, the
performance of the model is evaluated in regards of patients’
outcomes.

The traditional way to measure performance of an EMS system
is by considering the coverage or the number of calls that can be
responded to within a standard time. That is, a call is considered
as ‘‘covered’’ if a vehicle located at a facility is able to reach the call
location within the RTT, otherwise it is considered as ‘‘uncovered.’’
This measure is called 0–1 coverage, which is commonly used in
many facility location models. The 0–1 coverage is simple and easy
to interpret, but it cannot distinguish systems with response times
faster than the RTT; that is, for a 9 min RTT, reaching a call in 4 or
9 min yields the same coverage. Moreover, the 0–1 coverage con-
siders a call responded to within the RTT as a 100% covered call
while it considers a call responded 1 s later as a 0% covered call
which is not reflective of patient outcomes. Several ways have been
proposed to improve how to calculate the coverage such as using a
step function or a gradual function (see e.g. Berman, Krass, &
Drezner, 2003; Church & Roberts, 1983; Pirkul & Schilling, 1991),
for review see Eiselt and Marianov (2009). Another way to relax
the 0–1 coverage objective is to integrate a survival function into
the model. Erkut, Ingolfsson, and Erdogan (2008) first introduced
using survival functions to evaluate the performance of the cover-
ing facility location models especially for EMS systems. McLay and
Mayorga (2010) also proposed a way to evaluate performance of
the EMS system based on survival probability with respect to a
piece-wise function of distance. Since response time directly affect
the patients’ survival rate; it makes more sense to evaluate the per-
formance of the system based on the overall survival probability
instead of standard response time. In our model, survival probabil-
ity is incorporated into the objective as customers’ satisfaction. The
performance of our model is evaluated against other well know
location models in terms of the expected number of lives saved.

The rest of the paper is organized as follows. In Sections 2 and 3
we discuss two important model inputs. In Section 2 we briefly

describe how we estimate survival probability of a demand zone
using existing models from the literature; followed by the details
of calculating the probability of a vehicle being busy using the
hypercube model in Section 3. The notation and formulation of
the minimum p-envy location model are presented in Section 4.
Section 5 provides an illustrative example. Section 6 shows the
performance of the p-envy location model in comparison to other
location models. Section 7 discusses the sensitivity of the p-envy
location model when using different quality of service measures
(survival probability and traveled distance) and different choices
of priority assigned to serving facilities. Finally, Section 8 provides
a conclusion.

2. Estimating survival function

Typically, emergency medical 911 calls are classified by their
degree of urgency into three types; priority 1, 2, and 3. Priority 1
calls involve life-threatening emergencies such as cardiac arrest,
priority 2 calls may involve life-threatening emergencies, and pri-
ority 3 calls are believed to be non-life-threatening. This study
focuses on priority 1 call for which patient’s survival is highly cor-
related with EMS response time. In particular, the survival proba-
bility of a patient who has cardiac arrest depends on the
response time. The survival probability decays linearly to zero from
the time of collapse if there is no assistance. However, survival
probability may remain stable when paramedics arrive and pro-
vide medication and intubation or when patients arrive at a hospi-
tal (Erkut et al., 2008). Early EMS response time leads to early
sequence of therapy which yields higher chance of survival. Other
factors that might affect survival probability of patient are type of
trauma, age, sex, etc. Several studies focus on how to estimate the
survival probability of patients who have cardiac arrest based on
influential variables including response time. For a review see
Erkut et al. (2008).

In this study, we selected the survival function estimated by
Valenzuela, Roe, Cretin, Spaite, and Larsen (1997). The authors
found that age, initiation of CPR by bystanders, interval time from
collapse to CPR, interval time from collapse to defibrillation,
bystanders CPR/collapse to CPR interval interaction, and collapse
to CPR/collapse to defibrillation interval interactions were signifi-
cantly associated with survival, they also provided a simplified ver-
sion of the predictive model in which only collapse to CPR and
collapse to defibrillation intervals were used as variables; this
model performed comparably to the initially more complex model.
The simplified model for estimating the survival function is shown
as follows:

sðtCPR; tDefibÞ ¼ ð1þ e�0:260þ0:106tCRPþ0:139tDefib Þ�1 ð1Þ

where s denotes the patient survival probability, tCPR is the interval
time from collapse to CPR and tDefib is the interval time from col-
lapse to defibrillation.

For our purposes, let tRes denote the response time or the travel
time of an EMS vehicle from a station to an incident. Assume that it
takes 1 min after collapse to make a call for EMS dispatching, and
CPR is performed immediately upon EMS arrival as well as defibril-
lation which is used by a paramedic or EMT resulting in tCPR =
tDefib = 1 + tRes (these assumptions are similar to those made in
McLay and Mayorga (2010)). Then, the model in Eq. (1) can be
rewritten as follows:

sðtResÞ ¼ ð1þ e�0:015þ0:245tResÞ�1 ð2Þ

Fig. 1 shows the relationship between response time and probabil-
ity of survival from Eq. (2).
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