
Computational results for the flowshop tardiness problem

Kenneth R. Baker
Tuck School of Business, Dartmouth College, Hanover, NH, United States

a r t i c l e i n f o

Article history:
Received 10 July 2012
Received in revised form 31 October 2012
Accepted 19 December 2012
Available online 7 January 2013

Keywords:
Scheduling
Sequencing
Flowshop
Tardiness
Integer programming
Spreadsheet models

a b s t r a c t

This paper reports on computational experiments involving optimal solutions to the flowshop tardiness
problem. Of primary interest was a generic approach: solutions were obtained using a spreadsheet-based,
mixed-integer programming code. However, the results compare favorably with those from a specially-
tailored branch and bound algorithm. The main implication is that hardware and software have devel-
oped to the point that generic tools may offer the best way to solve combinatorial problems in
scheduling.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we address the minimization of total tardiness in
the permutation flowshop. This problem has been the subject of re-
search in the past, but progress on finding optimal solutions has
been limited. The computational results summarized here are
arguably the best yet reported. However, the more important point
is that they have been achieved without a tailored solution algo-
rithm. Instead, the optimization problem was formulated as a
mixed-integer program and solved with spreadsheet-based opti-
mization software. The implication is that hardware and software
have advanced to the point that generic tools are becoming com-
petitive when it comes to solving some difficult scheduling
problems.

This trend has important consequences for scheduling practitio-
ners. The opportunity to use generic tools to solve complex sched-
uling problems is a major advantage. For practical scheduling
problems, it may not be necessary to search the literature for a
highly specialized, state-of-the-art solution algorithm when a gen-
eric solution may work just fine. A generic solution approach (that
is, a spreadsheet-based formulation together with a publicly avail-
able mixed-integer programming code) is usually more accessible
than a highly specialized algorithm. Moreover, it may not be easy
to determine what problem sizes are amenable to solution by
state-of-the-art algorithms if published results are out of date.
(They are typically not updated as hardware tools develop.) For a
generic approach, however, it is not difficult to keep a sample

integer programming formulation on hand and test its solution
with each new generation of hardware or software. Thus, the main
implication is that spreadsheet-based optimization is becoming a
viable solution tool for scheduling applications.

This result also has implications for scheduling researchers.
When specialized algorithms are developed for combinatorial
scheduling problems, it makes sense to use mixed-integer pro-
gramming as a benchmark solution procedure, especially for cases
in which algorithm development has been limited. In an earlier era,
scheduling problems were sometimes solved using integer pro-
gramming in order to gain insight into integer programming meth-
ods. Now, finally, the opposite seems to be true: integer
programming methods can reveal our ability to solve the schedul-
ing problems themselves.

2. Minimizing total tardiness in the flowshop model

The flowshop model contains n jobs and m P 2 machines (re-
ferred to as an n �m problem). Job j has a given processing time,
pij, on machine i and a given due date, dj. Each job must visit the
machines in the same machine order, and the machines can pro-
cess at most one job at a time. As a result of scheduling decisions,
job j achieves a completion time, Cj. Its tardiness is defined as Tj =
max{0, Cj � dj}. The total tardiness in the schedule is

P
Tj, which is

the objective to be minimized.
We consider only schedules in which the jobs are processed in

the same order on all machines, a so-called permutation schedule.
Although it is theoretically possible that a non-permutation
schedule could be optimal, the search for an optimum is far more
complicated in the general case, and permutation schedules are

0360-8352/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cie.2012.12.018

E-mail address: ken.baker@dartmouth.edu

Computers & Industrial Engineering 64 (2013) 812–816

Contents lists available at SciVerse ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier .com/ locate/caie

http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cie.2012.12.018&domain=pdf
http://dx.doi.org/10.1016/j.cie.2012.12.018
mailto:ken.baker@dartmouth.edu
http://dx.doi.org/10.1016/j.cie.2012.12.018
http://www.sciencedirect.com/science/journal/03608352
http://www.elsevier.com/locate/caie

much easier to implement in practice. For this reason, attention
has been focused on permutation schedules. In standard notation,
the problem we address is denoted F|prmu|

P
Tj.

This problem is NP-hard, as shown by Koulamas (1994). It can
be viewed as a generalization of the single-machine tardiness
problem (which is also NP-hard) or a generalization of the flow-
shop total completion time problem (which is again NP-hard). Be-
cause the flowshop tardiness problem is a generalization of other
NP-hard problems, it comes as no surprise that finding solutions
to problem instances of even modest size may be quite challeng-
ing. A few papers have described optimization algorithms for this
problem, but most of the work on it has been oriented to heuristic
solutions that do not guarantee optimality. In this paper, we focus
on optimal solutions to the problem.

3. Progress in finding optimal solutions

Even the two-machine version of the flowshop tardiness prob-
lem is NP-hard, and for that reason, some research studies have ad-
dressed only that case. Other studies have investigated versions
with more than two machines, where we would expect that solu-
tions would be computationally even more difficult to obtain. The
article by Vallada, Ruiz, and Minella (2008), which primarily covers
heuristic methods, provides a careful review of previous research
on the flowshop tardiness problem. Part of this literature is special-
ized to the two-machine model, but we focus here on the general
case characterized by more than two machines. The state of the
art has been represented in two papers.

Kim (1995) examined problems with different values of m and
was able to solve problems as large as 14 � 4 and 13 � 8 within
a time limit of 1 h. Roughly a decade later, Chung, Flynn, and Kirca
(2006) also considered different values of m and were able to solve
most problems containing 15 jobs (and as many as 8 machines),
but several 20-job instances in their testbed went unsolved. In-
stead of using a time limit, they terminated their algorithm on
the basis of nodes visited in the branch-and-bound (BB) algorithm,
using a limit of four million nodes.

Based on the results of these studies, the state of the art among
specialized BB algorithms appears to be the solution of problems
with up to about 15 jobs and 8 machines. Clearly, improvements
in hardware have occurred since the Chung paper appeared, but
that does not necessarily mean that we should expect to solve
much larger problems today. Besides, estimating the largest prob-
lem size that could be solved by a specialized algorithm is some-
what complicated by the choice of a programming environment
and the design of a testbed, as we discuss later.

Using these results as guideposts, we implemented a spread-
sheet-based optimizing approach for comparison with the BB algo-
rithm described by Chung et al. We formulated the flowshop
tardiness problem as a mixed-integer program (see Appendix A
for formulation details) and found solutions using Risk Solver Plat-
form (RSP). RSP is an Excel add-in developed by Frontline Systems,
Inc. It is available with several textbooks and is widely used by stu-
dents and practitioners.1 We formulated the mixed integer program
on an Excel spreadsheet, using Visual Basic for Applications (VBA) to
construct the detailed model, and then invoked RSP from a VBA
subroutine.

We implemented the BB algorithm (see Appendix B) in VBA as
well, using Excel to provide input data and summarize the results.
We used VBA’s MicroTimer function to track solution times. Thus,
our comparisons relied on a spreadsheet platform and the VBA pro-
gramming language. For hardware, we used an Intel Core i7

2.7 GHz processor with 8 GB of RAM—that is, a laptop that would
be typical of what many undergraduate students use these days.
Finally, we designed a set of experiments to evaluate and compare
the spreadsheet-based approach with the tailored BB algorithm.

4. Parameters of the test data

Most computational studies of tardiness problems have used
the tardiness factor and the due-date range as parameters to guide
the generation of random test problems. This pair of parameters
was first used in combination by Baker and Martin (1974) for the
single-machine problem and has been used in various studies of
tardiness problems ever since. In the flowshop tardiness problem,
these same two factors were used in the studies cited above,
although sometimes with different interpretations. We review
the details briefly.

The tardiness factor (TF) represents the expected fraction of tar-
dy jobs in a randomly-chosen sequence. In the single-machine
model, the expected makespan is M = np, where p denotes the
mean processing time. Suppose we set the mean due date d = kp
(with k 6 n). Then we expect k jobs to be on time in a random sche-
dule, and we expect the fraction of tardy jobs to be TF = 1 � k/n.
Thus, the average due date can be expressed as follows:

d ¼ kp ¼ nð1� TFÞp ¼ Mð1� TFÞ

We can also represent the due-date range (DDR) as a fraction of
the expected makespan. Assuming a symmetric distribution, the
minimum due date is d �M(DDR)/2 and the maximum is
d + M(DDR)/2. For sampling purposes, we can draw due dates from
a uniform distribution between these two limits. In this derivation,
the interval is based on the mean value p.

In the flowshop problem, no formula exists for the expected
makespan. Reasoning with mean values, we can approximate the
expected makespan as the total processing time on the first ma-
chine plus the total processing time for the last job after it finishes
on the first machine. In other words,

M ¼ npþ ðm� 1Þp ¼ ðnþm� 1Þp ð1Þ

The due dates can then be sampled from the interval
[d �M(DDR)/2, d + M(DDR)/2]. An equivalent expression for this
interval is the following:

Minimum due date ¼ Mð1� TF� DDR=2Þ ð2aÞ
Maximum due date ¼ Mð1� TFþ DDR=2Þ ð2bÞ

This method was used in our experiments. We first drew mn
processing times from a uniform distribution on the integers from
1 to 99. Then, according to specified values of TF and DDR, we cal-
culated the limits of the due-date distribution from (2a) to (2b) and
drew n due dates from a discrete uniform distribution with those
limits. After sampling, we computed optimal solutions using BB
and RSP.

For the m-machine flowshop model, Kim (1995) used essen-
tially the same method for generating test problems, except for
using a lower bound on the estimated makespan described in (1).
On the other hand, Chung et al. (2006) interpreted the parameters
quite differently. In their experiments, the processing times were
generated in several different ways, some with correlation, some
with trend, some with both, and some with neither. If we consider
just the case of neither (i.e., independent sampling of processing
times), they essentially set M = cnmp, where c = 0.5, 1.0, or 1.5,
and the other parameters were as defined above. In other words,
aside from the factor c, they interpreted M as the sum of all pro-
cessing times. Obviously, if we think of this value as an estimate
of the makespan, it is biased upward. (In the single-machine prob-
lem, of course, the sum of all processing times and the makespan

1 In particular, the experiments reported here used default settings in the software,
which includes implementation of the Gurobi Solver Engine.

K.R. Baker / Computers & Industrial Engineering 64 (2013) 812–816 813

Download English Version:

https://daneshyari.com/en/article/1133951

Download Persian Version:

https://daneshyari.com/article/1133951

Daneshyari.com

https://daneshyari.com/en/article/1133951
https://daneshyari.com/article/1133951
https://daneshyari.com

