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a b s t r a c t

Traveling salesman problem (TSP) is proven to be NP-complete in most cases. The genetic algorithm (GA)
is improved with two local optimization strategies for it. The first local optimization strategy is the four
vertices and three lines inequality, which is applied to the local Hamiltonian paths to generate the shorter
Hamiltonian circuits (HC). After the HCs are adjusted with the inequality, the second local optimization
strategy is executed to reverse the local Hamiltonian paths with more than 2 vertices, which also gener-
ates the shorter HCs. It is necessary that the two optimization strategies coordinate with each other in the
optimization process. The two optimization strategies are operated in two structural programs. The time
complexity of the first and second local optimization strategies are O(n) and O(n3), respectively. The two
optimization strategies are merged into the traditional GA. The computation results show that the hybrid
genetic algorithm (HGA) can find the better approximate solutions than the GA does within an acceptable
computation time.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The objective of traveling salesman problem (TSP) is to find the
shortest tour visiting each city once and exactly once in a tourist
map. The cities are connected with routes in the map. The tour
including each city once is named as Hamiltonian circuit (HC)
and the shortest Hamiltonian circuit is the optimal Hamiltonian
circuit (OHC) for Euclidean TSP. As we know, TSP has been proven
to be NP-complete (Zhang & Korf, 1996). TSP has been widely stud-
ied in the fields of combinatorial mathematics, graph theory and
computer science due to its theoretical and practical values
(Rodríguez & Ruiz, 2012; Wang & Liu, 2010). However, there is
no polynomial algorithms for the NP-complete problems unless
NP = P (Berman & Karpinski, 2006). The research on the efficient
algorithms for TSP is still one frontier subject.

Because of its hardness, TSP becomes one of the best platforms
to test the performance of all kinds of algorithms. Exact algorithms,
approximate algorithms and intelligent algorithms are extensively
designed for TSP. Many literatures illustrated that the exact algo-
rithms, such as the depth-first search graph algorithm (Douglas,
2006), the integer programming methods (Climer & Zhang, 2006)
and dynamic programming methods, are feasible to tackle the

TSP with less than 1000 cities (Johnson & McGeoch, 2004). They
can find the OHC within an acceptable computation time using
powerful Turing machines. When the scale of TSP becomes larger,
the approximate algorithms demonstrate their good performance.
The local search rules used by the approximate algorithms are effi-
cient to allow them find the OHC or near OHC in a polynomial com-
putation time. The experiments show that the k-opt algorithms
(Verhoeven, Aarts, & Swinkels, 1995), the LKH algorithm has dealt
with the large scale of TSP with thousands of cities, even more than
3,000,000 cities (Helsgaun, xxxx). On the other hand, the local
search rules, such as the neighborhood information (Liu, 2008),
will make the algorithms trap into the local minima. Therefore,
the quality of the solutions cannot be evaluated due to the lack
of the OHCs.

The intelligent algorithm is another resolution for TSP. They find
the best or approximate solutions based on the evolutionary rules
which are different from the local search rules. Almost all of the
intelligent algorithms, including the anterior artificial neural net-
work (Ghaziri & Osman, 2003) and the recent particle swarm opti-
mization (Chen et al., 2010), have been applied to TSP. The genetic
algorithm (GA) is one of the competitive intelligent algorithms for
discrete optimization problems. It evolves to the optimal solution
with the crossover operation and mutation operation (Schmitt &
Amini, 1998). The crossover operation guarantees the better genes
evolve to the offspring to obtain better solutions. The mutation
operation maintains the diversity of the offspring to reproduce
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better solutions. Although it has many merits, the genetic algorithm
usually detects an approximate OHC for TSP. It is always improved
to acquire the better performance. The good initial solutions facili-
tate the genetic algorithm to evolve to the best solution. Liu (Liu,
2010) designed three kinds of initial solution generators under the
GA framework for TSP. It is found that the various computation
times are consumed and different results are obtained with differ-
ent initial solutions. To enhance the performance of traditional
GA, the local search rules are widely taken into consideration. The
1-shift and 2-opt local search rules are merged into the GA by Liu
(2010). Also, the feasible search space is computed by Choi, Kim, &
Kim (2003) through determining the infeasible solutions with
sub-tours. The memetic algorithm is introduced by Bontoux,
Artigues, & Feillet (2010). The cities are partitioned into a set of clus-
ters first, and the minimum tour visiting each cluster is found with
the crossover procedure based on a dynamic programming algo-
rithm. The cluster method is also used by Ding, Cheng, & He
(2007) in their two-level genetic algorithm, in which the first level
is to generate the shortest sub-tours and the second level is to
generate the shortest tour with the sub-tours. The immigration,
local and global optimization strategies are defined and inserted
into the GA (Xing et al., 2008). In addition, the other intelligent
algorithms are combined with GA to reinforce its performance.
The genetic algorithm is improved by Liu & Zeng (2009) with the
reinforcement mutation which relies on the reinforcement learning.
The genetic algorithm, simulated annealing, ant colony optimiza-
tion and particle swarm optimization are integrated together to
utilize their total advantages (Chen & Chien, 2011).

Different from the above researches, the genetic algorithm with
two local optimization strategies is designed for TSP. The first local
optimization strategy is the four vertices and three lines inequality.
The four point conditions for symmetrical TSP has been summa-
rized by Deineko, Klinz, & Woeginger (2006) under their assump-
tions. The approximate algorithms with the four point conditions
are seldom regarded. The four vertices and three lines inequality
is the extension of one of the fundamental four point conditions.
It is the constraint of the local optimal Hamiltonian path connected
by four vertices in the OHC or an approximate OHC. When the local
Hamiltonian paths in the HCs are transformed into the local opti-
mal Hamiltonian paths with the four vertices and three lines
inequality, the HCs will become shorter. The computation com-
plexity of the algorithm based on the local optimization strategy
is O(n). After the HCs are adjusted with the four vertices and three
lines inequality, the adjacent vertices in the HCs cannot be ex-
changed to produce the shorter HCs. On the other hand, the nonad-
jacent vertices in the HCs are allowed to exchange to generate the
next shorter HCs. The second optimization strategy is the reversion
of a selected local Hamiltonian paths including over 2 vertices. The
algorithm is designed according to the optimization strategy and
the maximum computation complexity is O(n3).

The two strategies are merged into the genetic algorithm to
construct a hybrid genetic algorithm (HGA). The first local optimi-
zation strategy is executed after the HCs are generated to produce
the shorter HCs. The second optimization strategy is merged into
the mutation operation to generate the shorter HCs. The HGA are
designed and tested with the TSP instances downloaded from the
TSPLIB. The results show that the OHCs of most of the small scale
of TSP instances are found within an acceptable computation time.
For the large scale of TSP, the errors of the detected approximate
OHCs to the given OHCs are very small.

2. Basic knowledge on symmetrical TSP

In graph theory, it is to find the OHC in a weighted graph (WG)
and only the simple graph G is considered for TSP. The cities and

routes are mapped into the vertices and edges in the WG. For a
graph G including n vertices, it is generally represented as G = hV,Ei,
where V = hv1, v2, . . . , vni are the vertices sets and E = [eij]n�n are the
edges sets. vi (1 6 i 6 n) is the vertex and eij (1 6 i, j 6 n) is the edge
connecting the two vertices vi and vj. The relationships of the
vertices in graph G are represented as an adjacent matrix
A(G) = [aij]n�n (1 6 i, j 6 n), where aij = 1 if (vi, vj) 2 E(G) and vi and
vj are adjacent in the graph G. Otherwise, aij = 0. If the edges are
assigned with weights W = [wij]n�n, the graph G becomes one
WG. The weight wij is often taken as distance, cost, etc. for various
kinds of TSP. If wij = wji, the WG is symmetrical. Otherwise, it is
asymmetrical. It is considered that the symmetrical TSP is more
difficult than the asymmetrical TSP (Helsgaun, xxxx). The report
said the asymmetrical TSP with 500,000 cities had been resolved
whereas the symmetrical TSP with only 7397 cities was resolved
at that time.

Given a WG including n vertices, there are total (n � 1)!/2 HCs
for the symmetrical TSP. The OHC is taken as the HC whose length
is the shortest among all of the HCs for the Euclidean TSP. Given
the HC including n vertices, it is represented as HCn+1 = (v1, v2, v3,
. . . , vn, v1). The end vertex v1 emerges repeatedly once to form
the HC. Given li�j is the distance between the two adjacent vertices
vi and vj in the HC, the computation model of the symmetrical TSP
is given as formula (1).

Lmin ¼minðLðHCÞÞ ¼min
Xn

i;j¼1

li�j

Subject to v i–v j and ei�j 2 EðHCÞ

9>=
>; ð1Þ

where L(HC) is the length of the HC, ei�j(1 6 i, j 6 n) is the edge link-
ing the two adjacent vertices vi and vj in the HC. For the simple WG,
it is equal to the standard form of integer programming for TSP
(Climer & Zhang, 2006). With the model, all the HCs will be
traversed and evaluated to find the OHC.

The HC consists of the local Hamiltonian paths (LHP) and the
OHC must be composed of the local optimal Hamiltonian paths
(LOHP). The LHP or LOHP including i (1 6 i 6 n) vertices is repre-
sented as LHPi or LOHPi = (v1, v2, v3, . . . , vi). The vertices v1 and vi

are the end vertices, and the other vertices between them are the
middle vertices. There are no identical vertices in the LOHPs or
LHPs.

For general WG, the orders of the vertices are determined in the
OHC. For an arbitrary LOHP in the OHC, the orders of these vertices
are also concluded as well as its two end vertices. Its length is the
minimum among those of the LHPs including the same vertices in
condition that their two end vertices are identical. If i is big, it is
also NP-complete to detect a LOHPi. If i is small, it is relatively con-
venient to compute a LOHPi. But not all of the LOHPs belong to the
OHC.

3. The genetic algorithm with the two local optimization
strategies

3.1. The traditional genetic algorithm

Genetic algorithm originates from the evolutionary rules of the
nature population and it is one of the unconstrained optimization
methods (Holland, 1975). The solution of optimization problem is
encoded as the chromosome and the concrete parameters of solu-
tion are taken as the genes of the chromosome. For most of the
optimization problems, the solutions are often encoded as the bin-
ary strings. However, it is believed that the binary string is not suit-
able to represent an HC (Michalewicz, 1994). The binary code of
the cities will make the GA become complex for TSP. The litera-
tures (Gen & Cheng, 1997; Michalewicz, 1994) summarized the
current representations of the HCs, such as the adjacency
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