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a b s t r a c t

While early research efforts were devoted to the protection of systems against disruptive events, be they
malevolent attacks, man-made accidents, or natural disasters, recent attention has been given to the
resilience, or the ability of systems to ‘‘bounce back,’’ of these events. Discussed here is a modeling par-
adigm for quantifying system resilience, primarily as a function of vulnerability (the adverse initial sys-
tem impact of the disruption) and recoverability (the speed of system recovery). To account for
uncertainty, stochastic measures of resilience are introduced, including Time to Total System Restoration,
Time to Full System Service Resilience, and Time to a%-Resilience. These metrics are applied to quantify
the resilience of inland waterway ports, important hubs in the flow of commodities, and the port resil-
ience approach is deployed in a data-driven case study for the inland Port of Catoosa in Oklahoma. The
contributions herein demonstrate a starting point in the development of a resilience decision making
framework.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction and motivation

While early research efforts have been devoted to the protec-
tion (or hardening) of systems against disruptive events, be they
malevolent attacks, man-made accidents, or natural disasters, re-
cent attention has been placed on preparedness, response, and
recovery (PR2) from these events. This is particularly true for the
nation’s critical infrastructure and key resources (CIKR), as DHS
(2009) recently stated that ‘‘CIKR resilience may be more impor-
tant than CIKR hardening.’’

Resilience research has been an emerging research area for the
last decade, though no standard definition or quantitative
technique for the paradigm of system resilience has emerged.
One approach, illustrated in Fig. 1 as described in Henry and
Ramirez-Marquez (2012), describes resilience as the ability to
restore a system from disrupted state, Sd, to a stable recovered
state, Sf. Resilience is thus defined as the time dependent ratio of
recovery over maximum loss in Eq. (1).

zðtÞ ¼ RecoveryðtÞ=Maximum LossðtdÞ ð1Þ

For multi-modal transportation, as with any other CIKR, system
resilience planning is important (DHS, 2009). The multi-modal
transportation system plays a vital role in maintaining commodity
flows across multiple industries and multiple regions. Examples of
actual disruptive events that befall the transportation system in-
clude the collapse of the I-40 bridge spanning the Arkansas River
in Oklahoma resulting in the daily detour of 22,000 vehicles for
nearly 2 months (Federal Highway Administration, 2008) and the
I-35W bridge collapse over the Mississippi River in Minnesota,
which required daily rerouting of 140,000 vehicles (Zhu, Levison,
Liu, & Harder, 2009).

As a result of their critical role, the effects of large-scale disrup-
tive events could result in the closure of key transportation facili-
ties such as rail yards, cargo terminals, airports, seaports, and
inland ports. Critical nodes in a transportation network (e.g., inland
waterway ports) are particularly susceptible to disruptions in com-
modity flows (Lee, Park, & Lee, 2003; Lee & Kim, 2010; Sacone &
Siri, 2009; Simao & Powell, 1992). Although inland ports face many
of the same risks as coastal ports, relatively few studies have
developed risk assessments of inland ports (Folga et al., 2009;
MacKenzie, Barker, & Grant, 2012). Inland waterways are common
in North America and prominent in the economies of Europe
(Rodrigue, Debrie, Fremont, & Gouvernal, 2010) and Asia (Xu &
Zeng, 2008). The importance of the 25,000 miles of commercially
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navigable US waterways for transporting goods may grow in the
future as barge transportation represents a cheaper and environ-
mentally friendlier alternative to already highly-congested truck
and train transportation. Further, an expansion of inland water-
ways to deal with larger shipments (i.e., containers) has been pro-
posed, leading to an increased need in addressing container
security and the malevolent man-made attacks that could go along
with unsecured containers (GAO, 2009). Container security will be-
come even more important when the planned Panama Canal
expansion project opens in 2014, enabling bigger ships, and more
containers, from Asian to Atlantic and Gulf coastal ports and their
associated inland waterways. And as the most recent Report Card
for America’s Infrastructure gave inland waterway infrastructure
a D-(ASCE, 2009), inland ports are particularly susceptible to natu-
ral cause and accidental failures.

Recent explorations of resilience in transportation systems in-
clude (i) a conceptual discussion of resilience with several qualita-
tive definitions of resilience-related terms in a transportation
context by Ta, Goodchild and Pitera (2009) and (ii) a graph theo-
retic optimization framework for resilience by Ip and Wang
(2011) that does not include an accounting for recovery time. Work
described here proposes stochastic and time dependent metrics of
system resilience, as applied to waterway container terminals. The
contributions of the paper are twofold: (i) the deterministic met-
rics described in Henry and Ramirez-Marquez (2012) are extended
to the stochastic case (Time to Total System Restoration, Time to
Full System Service Resilience, and Time to a%-Resilience), and
(ii) these metrics are used to develop a port resilience approach
that is deployed in a data-driven case study for the inland Port of
Catoosa in Oklahoma. These contributions serve as a starting point
in the development of a resilience decision making framework.

The remainder of this manuscript is as follows: Section 2 pro-
vides the quantitative background for the resilience framework,
and Section 3 integrates the work of Henry and Ramirez-Marquez
(2012) and Pant, Barker, Grant, and Landers (2011) to provide sto-
chastic measures of port operations. Section 4 develops the port
resilience framework, and Section 5 illustrates with a data-driven
illustration from the inland Port of Catoosa in Oklahoma. Conclud-
ing remarks are provided in Section 6.

2. Resilience background and methodological development

This section describes some of the modeling ideas that comprise
our methodological approach, including previous work in measur-
ing resilience and in simulating the operations at a container
terminal.

2.1. General representation of resilience

Several approaches to describe resilience have been proposed
across several application domains. Qualitative discussions of the
‘‘resilience triangle,’’ whose area is produced by robustness (the
amount of initial impact to the system) and rapidity (the speed
with which recovery takes place), is a well-studied concept in civil
infrastructure applications (Bruneau et al., 2003; Bruneau &

Reinhorn, 2007; Cimellaro, Reinhorn, & Bruneau, 2010; McDaniels,
Chang, Cole, Mikawoz, & Longstaff, 2008). Zobel (2011) discusses a
more quantitative decision making framework based on the resil-
ience triangle, highlighting tradeoffs between robustness and
rapidity for the same level of disaster resilience. MacKenzie and
Barker (2012) integrate an interdependency model with regression
to quantify the resilience of electric power infrastructure disrup-
tions. The quantitative measures of resilience developed in this
section are adapted from Henry and Ramirez-Marquez (2012).

Let X = (A) represent a system, where A = {i|1 6 i 6m} is the set
components comprising the system. For component i at time t, xi(t)
is the state variable (real number) describing the performance of
the component, possibly valuating an entity such as capacity, de-
lay, or length, among others. The system state vector at time t,
x(t) = (x1(t), x2(t), . . . ,xm(t)), denotes the state of all the system com-
ponents at time t. The entire system performance can be quantified
with respect to an overall system performance/service measure.
The service function, u(x(t)) = u(t), which can be analyzed for
any possible realization of x(t), maps the system state vector into
a real number system state at time t.

As described in Fig. 1, a system can operate in three distinct
states: (i) its original, as-planned state, S0, (ii) its disrupted state,
Sd, that results from a disruption to the system, and (iii) its recov-
ered state, Sf, that results from a recovery effort. State Sf need not
be the same as S0, as the new state may reach an alternative (lower,
or perhaps higher) equilibrium level (e.g., for economic systems
(Rose & Liao, 2005)). Transitions between these states include (i)
system disruption, taking the system from S0 to Sd, and (ii) system
recovery, taking the system from Sd to Sf. While Fig. 1 provides a
broad description of the process of resilience, it does not include
key entities related to resilience that are provided in the detailed
representation in Fig. 2. According to Henry and Ramirez-Marquez
(2012), resilience of a system at time t, is exhibited if and only if
there is an external disruptive event, ej, that affects the original
system state (depicted in Fig. 2 as S0) at time te. Set D ¼ fejj1
6 j 6 Jg describes the set of possible external disruptive events
that could affect the system at time te.

Let xi(t0) represent the as-planned state of the ith component
prior to the onset of disruptive event ej. Assume that the effect of
ej is a proportional reduction in the performance of the ith compo-
nent by Vj

iðejÞ ¼ Vj
i where Vj

i 2 ½0;1�. Vj
i essentially refers to a com-

ponent’s vulnerability, or its lack of ability to maintain
performance after ej. As such, the effect of ej on the state variable
of component i is provided in Eq. (2). The decreasing system per-
formance due to the disruptive event is seen in its response until
time td when the new system state is measured. Note that a com-
plete reduction in the functionality of the link occurs when Vj

i ¼ 1.
The vector quantifying the disruptive effects of ej for all compo-
nents is Vj ¼ ðVj

1; . . . ;Vj
i; . . . ;Vj

mÞ.

xiðtdÞ ¼ 1� Vj
i

� �
xiðt0Þ ð2Þ

Note that in this work we do not focus on the trajectory of the
decrease in system performance (i.e., linearly or non-linearly over
td–te), but in the final decreased state until the maximum effects

Fig. 1. System state transition with time.
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