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a b s t r a c t

Motivated by applications in food processing and semiconductor manufacturing industries, we consider
the scheduling problem of a batching machine with jobs of multiple families. The machine has a limited
capacity to accommodate jobs. The jobs are in arbitrary sizes and multiple families. Jobs from different
families cannot be processed in a batch. We show the problems of minimizing makespan and total batch
completion time are both NP-hard in the strong sense. We present a mixed integer programming model
for the problems. Then we propose two polynomial time heuristics based on longest processing time first
rule and first fit rule. For the special case where a larger job also has a longer processing time, the heu-
ristic for minimizing makespan is optimal. For the general case, we show the performance guarantee of
the methods for the two objectives respectively.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The scheduling problem of batching machines has many appli-
cations in the real industries such as semiconductor manufactur-
ing, food processing and metal working. In a typical scheduling
of batching machines, the jobs are processed in batches and the
machines have limited capacity to accommodate jobs. In contrast
to the classical scheduling, this type of scheduling is more complex
for the jobs should first be assigned into batches and then sched-
uled on machines.

The early research concentrated on the problems where the
batching machines are supposed to process a fixed number of jobs.
Lee, Uzsoy, and Martin-Vega (1992) presented the first paper on
the topic. They showed that the problem of minimizing makespan
is NP-hard in the strong sense. Then the scheduling of batching
machines with agreeable release times and due dates was
proposed from the semiconductor manufacturing systems (Li &
Lee, 1997). Ji and Cheng (2010) and Li, Ng, Cheng, and Yuan
(2011) considered the batching machine with deteriorating jobs
and release dates and provide polynomial time algorithms. The
reviews of the related research on batching machines were made
in Potts and Kovalyov (2000) and Méndez, Cerdá, Grossmann,
Harjunkoski, and Fahl (2006).

The recent literature has been focusing on the scheduling prob-
lem of batching machines with jobs of arbitrary sizes, which is an
extension of the above scheduling. In this type of scheduling, the
machines have a given capacity and the jobs have arbitrary sizes
which are determined by the customers. Uzsoy (1994) introduced
the single-machine problem and proposed several heuristics for
minimizing makespan and total completion time. The perfor-
mances of the heuristics were then analyzed by Zhang, Cai, Lee,
and Wang (2001). Other heuristics has been seen in Li, Li, Wang,
and Liu (2005) and Kashan, Karimi, and Ghomi (2009). Besides,
Dupont and Flipo (2002) provided a branch and bound method
for the problem. On the other hand, meta-heuristics has also been
introduced to solve the scheduling problem. Sevaux and Peres
(2003) applied genetic algorithm to minimize the weighted num-
ber of late jobs. Then the performance of genetic algorithm was
improved by modifying the coding and decoding methods in Koh,
Koo, Kim, and Hur (2005), Damodaran, Manjeshwar, and Srihari
(2006) and Kashan, Karimi, and Jenabi (2008). Other meta-
heuristics are also applied such as simulated annealing (Melouk,
Demodaran, & Chang, 2004), branch and price algorithm (Parsa,
Karimi, & Kashan, 2010) and ant colony optimization (Cheng, Li,
& Chen, 2010).

In practice the scheduling on a single batching machine where
the jobs are divided into multiple incompatible families are often
encountered. A job family is a subset of jobs which can be pro-
cessed together in a batch, i.e., jobs from different families cannot
be assigned together in a batch for they have different require-
ments on processing conditions. In practice the customers have
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various demands on the product and this is a challenge for compa-
nies to optimize the production. The methods for scheduling job
families have been an interesting direction for researchers. Exact
algorithms for the problem were studied in Yuan, Shang, and
Feng (2005), Fu, Tian, and Yuan (2009) and Liu, Ng and Cheng
(2010). Meta-heuristics were studied in Malve and Uzsou (2007),
Chiang, Cheng, and Fu (2010) and Tian, Cheng, Ng, and Yuan
(2011). However, no algorithm with a performance guarantee has
been proposed for the single batching machine with jobs of arbi-
trary sizes and incompatible families. In this paper, we provide a
polynomial time algorithm with a performance guarantee for the
problem. The remainder of the paper is organized as follows. In
Section 2, we present a mathematical model for the problem under
investigation and discuss the computational complexity. In Sec-
tion 3, we present optimality properties and provide our heuristic
algorithms. In Section 4, we analyze the time complexity of the
heuristics and their performance guarantees for minimizing make-
span and total batch completion time. Finally in Section 5, we con-
clude this paper and give directions for future work.

2. Mathematical model and computational complexity

The problem under investigation can be described as follows.
There are n jobs to be processed on a single machine and the job
set is J = {1, . . ., n}. The jobs belong to m families and the set of fam-
ilies is F = {F1, . . ., Fm} where |Fi| = ni. Job j has a size sj and a process-
ing time tj, both of which are determined by the customers. The
jobs are processed in batches given that the total size of jobs in
each batch cannot exceed the machine capacity C. P represents
the problem of minimizing makespan and p represents a feasible
solution. Q represents the problem of minimizing total batch com-
pletion time and l represents a feasible solution. Then p is a set of
batches {big: i = 1, . . ., m; g = 1,. . ., Gi}, where Gi is the number of
batches containing jobs form Fi. The processing time of big is Tig

and G ¼
Pm

i¼1Gi. Since at most one batch can be processed on the
machines simultaneously, in a feasible solution the batches can
be ordered as Bg (g = 1, . . ., G) according to the processing. So l is
a permutation of batches B1, . . ., BG.

We set 0–1 variables as decision parameters. The variables are
defined as:

aig ¼
1 the g� th batch is created forFi

0 otherwise

�
; bjig ¼

1 if j 2 big

0 otherwise

�
.

Then the model of minimizing makespan for P is as following.

Minimize Cmax ¼
Xm

i¼1

XGi

g¼1

Tig ð1Þ

Subject to

bjig 6 aig i ¼ 1; . . . ;m; j ¼ 1; . . . ;n ð2Þ

ni ¼
Xn

j¼1

bjig i ¼ 1; . . . ;m ð3Þ

XGi

g¼1

bjig ¼ 1 j ¼ 1; . . . ;n ð4Þ

Xm

i¼1

XGi

g¼1

bjig ¼ 1 j ¼ 1; . . . ;n ð5Þ

Xn

j¼1

bjigsj 6 C i ¼ 1; . . . ;m ð6Þ

Tig ¼maxftj : bjig ¼ 1g i ¼ 1; . . . ;m ð7Þ

aig ;bjig 2 f0;1g 8i; j; g: ð8Þ

Objective (1) implies that the makespan is the sum of the process-
ing times of all the batches. On the other hand, the objective func-
tion of total batch completion time is:

X
Ci ¼

XG

g¼1

Xg

l¼1

Tl ð9Þ

Constraint (2) ensures that a job can be assigned in a batch only
when the batch is created. Eq. (3) implies the value of bjig determines
the number of batches created for family Fi. Eqs. (4) and (5) ensures
that a job should be assigned in only one batch and the other jobs in
this batch should belong to the same family. Constraint (6) ensures
that the total size of job in each batch should not exceed the machine
capacity. Eq. (7) implies that the processing of a batch is non-pre-
emptive and constraint (8) is the definition of the 0–1 variables.
Clearly the problem is to decide the value of aig and bjig.

Theorem 1. P and Q are both NP-hard in the strong sense.

Proof. First we analyze the computational complexity of P. Let P1

represent a special case of P where m = 1 and ti (i = 1, . . ., n) is a con-
stant t0. Then the processing time of any batch is a constant and
any two jobs can be combined together in the same batch. By con-
trast, consider the famous bin-packing problem where the item list
is {1, . . ., n} and the size of item j is sj/C and the objective is to
assign the items into the minimum number of bins. Denote the
bin-packing problem as P2. We show there is a solution for P1 if
and only if there is a solution for P2.

If p is an optimal solution for P1, i.e.,

Cmax ¼
Xm

i¼1

XGi

g¼1

Tig ¼
Xm

i¼1

Git0 ¼ Gt0:

This implies that G is minimized since t0 is a constant. Now in P1,
assign all the items using the same method as p, and we see G is
also the number of bins. On the other hand, if G is the feasible num-
ber of bins in P2, similarly we get that the method of assigning the
items is also the optimal schedule for P1. Therefore, P1 is equivalent
to P2. Since P1 is a special case of P and the bin-packing problem is
NP-hard in the strong sense, P is NP-hard in the strong sense.

Q is to minimize
P

Ci ¼
PG

g¼1
Pg

l¼1Tl and here we also consider
a special case Q1 where m = 1 and ti = t0 (i = 1, . . ., n). Note that in
this case,

X
Ci ¼

XG

g¼1

Xg

l¼1

Tl ¼
XG

g¼1

gt0 ¼
GðG� 1Þ

2
t0:

Q1 is just to find an optimal G, which is shown to be NP-hard in the
ordinary sense as above. Therefore, Q1 is NP-hard in the strong
sense and consequently Q is NP-hard in the strong sense. This com-
pletes the proof of Theorem 1. h

3. Proposed heuristics

3.1. Implementation of heuristics

First we discuss the properties of optimal solutions p⁄ and l⁄.
For the sake of simplicity, in the following content we use U and
V to denote Cmax and

P
Ci.

Theorem 2. In p⁄ and l⁄, if B�x and B�y are two batches assigned with
jobs from the same family, then

P
j2B�x

sj þ
P

j2B�y
sj > C.

Proof (By contradiction). Suppose in an optimal solution p⁄, there
are two batches B�x and B�y such that

P
j2B�x

sj þ
P

j2B�y
sj 6 C. Then the
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