
Improvement of the evaluation of closed-loop production systems with
unreliable machines and finite buffers q

Chuan Shi ⇑, Stanley B. Gershwin
Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA

a r t i c l e i n f o

Article history:
Received 3 May 2013
Received in revised form 2 July 2014
Accepted 8 July 2014
Available online 17 July 2014

Keywords:
Closed-loop production system
Evaluation
Unreliable machines
Finite buffers
Markov models
Decomposition

a b s t r a c t

A closed-loop production system, or loop, is a system in which a constant amount of material flows
through a single fixed cycle of workstations and storage buffers. Manufacturing processes that utilize pal-
lets or fixtures can be viewed as loops. Control policies such as CONWIP and Kanban create conceptual
loops. Gershwin and Werner (2007) developed a decomposition algorithm that accurately evaluates
Buzacott type closed-loop systems of any size. However there are cases where the evaluated production
rate, as a function of some system parameter, is discontinuous. Such a discontinuity may give misleading
results for loop system design and optimization method. We present two modifications that improve the
algorithm of Gershwin and Werner (2007). Two new special types of two-machine one-buffer building
blocks are developed for the decomposition, and analytical solutions for them are found. Numerical
experiments are provided to show the improvement of the evaluation accuracy as compared with the
existing algorithm. The discontinuity in production rate is greatly diminished with these modifications.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Closed-loop manufacturing systems

In a closed-loop manufacturing system (or loop), a constant
amount of material flows through a set of machines and buffers
in a fixed cycle. This type of system has many industrial applica-
tions and therefore is common in factories. For example, manufac-
turing processes that employ pallets or fixtures can be viewed as
loops, because the number of pallets/fixtures in the system
remains constant. In addition, control policies such as CONstant
Work-In-Process or CONWIP (Spearman, Woodruff, & Hopp,
1990), and Kanban (Monden, 1998) create conceptual loops. Both
of them use cards to control system WIP. The number of cards
impose a limit on the number of parts that can be in the system
at any given time.

Fig. 1 shows a k-machine k-buffer loop system. Parts enter the
system at M1, where they are attached to pallets or fixtures. When
the part-pallet assemblies reach Mk, pallets and parts are separated
and the parts leave the system. Empty pallets go to buffer Bk. The

conventional assumption for analysis is that there are always parts
available at M1, and there is always space for parts after Mk.

Parts can enter the system whenever M1 is not blocked (i.e.,
whenever B1 is not full of part-pallet assemblies) and not starved
(whenever Bk holds at least one pallet and is therefore not empty).
They can be processed by Mk whenever Bk is not full. There is no
way that pallets can enter or leave the system. Consequently, the
number of pallets in the system is constant.

A closed-loop system differs from a serial transfer line (or a
tandem flow line) because whether a new part can enter the system
or not depends on whether there are free pallets available. If all pal-
lets are occupied by parts being processed at machines in the sys-
tem, then the pallet buffer Bk will be empty and no parts will be
allowed to enter the system until one part leaves. The performance
of the serial transfer line is a function of the behavior of the
machines and the sizes of buffers B1 to Bk�1. The performance of
the closed-loop system depends on the same things as well as the
number of pallets and the size of buffer Bk. In general, the closed-
loop system will have both a smaller production rate and a smaller
average inventory of parts than the same system without Bk.

Now consider a system which can be described the same way,
but with cards or tokens instead of pallets. Unlike pallets or fix-
tures on which parts are mounted for operations, the cards provide
no such mechanical benefit. However, cards also limit the number
of parts in the system. This provides a benefit when the serial pro-
duction system (the loop without Bk and without cards) has a
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greater maximum production rate than the demand. In that case,
creating a loop allows the demand to be satisfied with reduced
inventory. We refer to the number of cards or pallets, which is con-
stant in the loop systems described here, as the loop invariant or
the loop population.

In the following, we are concerned with performance measures
such as the production rate and the average inventory in each buf-
fer, and these measures depend only on the dynamics of the sys-
tem (the movement of parts or cards, and the failures and repairs
of machines). Since the dynamics does not distinguish between
parts with pallets (or cards or tokens) and pallets (or cards or
tokens) without parts, we do not make that distinction either.
We will therefore refer to all of them with the same term: parts.

1.2. Industrial applications of closed loops

Loop systems and CONWIP policies are widely used. Ip, Huang,
Yung, Wang, and Wang (2007) studied a lamp assembly produc-
tion line by comparing single and multiple loop CONWIP control
systems. In their study, the production line can produce different
products with discrete distributions of processing time and
demand. Resano Lzaro and Luis prez (2008), Resano and Luis
(2009) studied networks of closed loops in automobile assembly
lines. Li, Yao, Liu, and Zhuang (2010) applied multi-CONWIP in
semiconductor assembly and test factory. Rodzewicz, Potterton,
Lappe, Yezefski, and Singer (2010) analyzed the CONWIP concept
applied to ship repair through a discrete event simulation. The con-
cept of CONWIP has been applied to supply chain management as
well (see Ovalle & Marquez, 2003). Takahashi, Myreshka, and
Hirotani (2005) compared Kanban, CONWIP and synchronized
CONWIP in complex supply chains.

Given the importance of loop systems, it is desirable to find the
optimal combination of buffer sizes and population size that allows
such a loop system to produce parts at a given production rate at
the minimum cost. There are a number of studies regarding the
evaluation of such systems, while little literature is devoted to
their optimization. Evaluation results provide the production rate
of the system and the average inventory level of each buffer. Opti-
mization depends highly on the accuracy of evaluation results, as
well as the smoothness of the evaluation results as a function of
system parameters.

1.3. Literature review

Frein, Commault, and Dallery (1992) proposed the first approx-
imate analytical algorithm that evaluates closed-loop systems
where machines are unreliable and buffers are finite. While the
number of parts in the system is constant and equal to a specified
quantity I, their method requires only that the expected total num-
ber of parts in the system be equal to I, and has no way of requiring
the number of parts to be constant. As a result, the method is only
accurate for large loops with I that is neither too large nor too small.

Maggio (2000), Maggio, Matta, Gershwin, and Tolio (2009) pre-
sented a new decomposition method to evaluate three-machine
three-buffer loops based on the work of Tolio and Matta (1998)
for transfer lines. Their approach considers the loop invariant con-
straint and machine behavior due to this constraint by developing
the concept of buffer threshold. Maggio and his co-authors pointed

out that machines have different behaviors when the inventory
level in a buffer is below or above a certain threshold, and there-
fore they deal with different machine parameters in different cases.
However, this approach is not practical for systems with more than
three machines. This is because when there are more machines and
buffers in a loop, each buffer may have multiple buffer thresholds,
and the number of distinct cases can grow dramatically. Hence, it is
computationally inefficient to track and derive all parameters in
the evaluation process.

Similarly, Tolio and Gershwin (1998) developed an approach for
estimating the throughput of a closed queueing network with
exponential machines and finite buffers. They also took into
account the behavior of machines, given the loop invariant con-
straint, by modeling state-dependent arrival and service rates.

Gershwin and Werner (2007) developed an evaluation algorithm
that simplifies and extends the decomposition method of Maggio
(2000) and Maggio et al. (2009). Their algorithm breaks up buffers
at thresholds into smaller buffers and inserts reliable machines
between them. This allows the algorithm to eliminate the threshold
issue in large closed-loop systems. The Gershwin–Werner algorithm
efficiently and accurately evaluates closed-loop systems of any size.
For other works on evaluation of loop systems, see Akyildiz (1988),
Lim and Meerkov (1993), Bonvik, Couch, and Gershwin (1997),
Bonvik, Dallery, and Gershwin (2000), Balsamo, de Nitto Personé,
and Onvural (2001) Bozer and Hsieh (2005), Biller, Marin,
Meerkov, and Zhang (2009), and Mhada and Malhamé (2011).

When the design goal of such system is to choose the optimal
buffer sizes and loop invariant, we care not only about the accuracy
of evaluation, but also the smoothness of evaluation with respect
to changes in the input parameters. The Gershwin–Werner algo-
rithm, although accurate, exhibits discontinuities of the evaluation
results. An example is shown in Fig. 7. The reason for the disconti-
nuities is described in Section 3.4. These discontinuities are unde-
sirable as they may lead to incorrect search directions in the
optimization of the design of loop systems.

1.4. Goal and outline of paper

The aim of this paper is to reduce the discontinuities of the loop
evaluation algorithm developed by Gershwin and Werner (2007).
We propose two modifications that eliminate the discontinuities,
improve the evaluation accuracy, and are essential to extend the
applicability of the Gershwin–Werner algorithm to the optimiza-
tion of loop systems.

The rest of the paper is organized as follows. The model of the
loop is described in Section 2. Section 3 briefly reviews the Gersh-
win–Werner algorithm. Two causes of the discontinuities in the
evaluation results and their remedies are provided in Section 4, fol-
lowed by numerical experiments demonstrating the improvement
in Section 5. Section 6 summarizes the paper and provides some
future research directions.

2. Model and notation

The model considered here is the same as the deterministic pro-
cessing time, discrete material flow line model of Tolio and Matta
(1998), but with an additional buffer (Bk in Fig. 1).

Fig. 1. A closed-loop system.

240 C. Shi, S.B. Gershwin / Computers & Industrial Engineering 75 (2014) 239–256



Download	English	Version:

https://daneshyari.com/en/article/1134042

Download	Persian	Version:

https://daneshyari.com/article/1134042

Daneshyari.com

https://daneshyari.com/en/article/1134042
https://daneshyari.com/article/1134042
https://daneshyari.com/

