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a b s t r a c t

Xu (2013) proposed a nonlinear programming model to derive an exact formula to determine the experts’
relative importance weights for the group decision making (GDM) with interval preference orderings.
However, in this study, we show that the exact formula to determine the weight vector which always
equals to w = (1/m, 1/m, . . . , 1/m)T (m is the number of experts). In this paper, we propose a distance-
based aggregation approach to assess the relative importance weights for GDM with interval preference
orderings. Relevant theorems are offered to support the proposed approach. After that, by using the
weighted arithmetic averaging operator, we obtain the aggregated virtual interval preference orderings.
We propose a possibility degree formula to compare two virtual interval preference orderings, then rank
and select the alternatives. The proposed method is tested by two numerical examples. Comparative
analysis are provided to show the advantages and effectiveness of the proposed method.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Let a group decision making (GDM) problem defined by a finite
set of n alternatives X = {x1, x2, . . . , xn}, and a group of m experts
E = {e1, e2, . . . , em}. In order to select the best alternative (s) or rank
the alternatives, the decision maker (DM) needs to combine the
individual experts’ preferences into a group choice or consensus.
There are many types of preference information which experts pro-
vide in GMD, such as ordinal ranking (Cook, 2006; Cook, Kress, &
Seiford, 1996; Cook & Seiford, 1978, 1982), utility values (Chiclana,
Herrera, & Herrera-Viedma, 1998; Herrera-Viedma, Herrera, &
Chiclana, 2002; Wang, Yang, & Xu, 2005b), multiplicative
preference relations (Saaty, 1980), fuzzy preference relations
(Herrera-Viedma, Alonso, Chiclana, & Herrera, 2007; Kacprzyk,
1986; Tanino, 1984; Xu, 2004; Xu, Da, & Wang, 2010; Xu, Li, &
Wang, 2014; Xu, Patnayakuni, & Wang, 2013a, 2013b; Xu & Wang,
2013), linguistic preference relations (Herrera & Herrera-Viedma,
2000; Herrera, Herrera-Viedma, & Verdegay, 1995; Xu, 2006; Xu
& Wang, 2012b), intuitionistic fuzzy preference relations (Xu,

2007; Xu & Wang, 2012a), intuitionistic multiplication preference
relations (Xia, Xu, & Liao, 2013), hesitant fuzzy preference relations
(Liao & Xu, 2013; Xu & Liao, 2013), etc. Among the above prefer-
ence information, ordinal data is an easy and effective way to
express the decision makers’ preferences. Many real world decision
problems involve the use of ranking order or ordinal scale data.
Ordinal data arise naturally in preferential election settings.
Consider the situation in which each voter (expert) is requested
to choose a subset of candidates from a ballot, and to rank order
that subset from most to least preferred. Such a voting format is
relatively common in municipal elections where a number of
candidates are required to fill various positions (Cook, 2006). A
complete ordinal ranking (no ties) of n alternatives must be an
arrangement of the integers {1, . . . , n}. An important group of
problems involving ordinal data and ranking concern the aggrega-
tion of preferences, provided by a set of experts, into a group
preference function or a consensus. Many methods have been
developed to aggregate ordinal preferences on a set of alternatives
into a consensus, including Borda-Kendall method (Cook & Seiford,
1982), minimum variance method (Cook & Seiford, 1982), dis-
tance-based consensus models (Cook, 2006; Cook & Seiford,
1978; Cook et al., 1996), goal programming approach (González-
Pachón & Romero, 1999), etc.

However, in sometime, the experts are indecisive, and thus give
certain imprecision in their judgments. Consequently, the ranking
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given to the j th alternative by the experts is not a fixed number
but a closed interval. Under this context, the experts may not give
a complete ranking of alternatives but interval preference order-
ings (or called partial orders) (González-Pachón & Romero, 2001).
For example, suppose that an investment company wants to invest
a sum of money in the best option. There are four possible alterna-
tives for the company to invest: a car company, a food company, a
computer company and an arms company. The preferences of the
company are as follows: The car company is ranked top 2, the food
company is top 3, the computer company is second or third, the
arms company is bottom 2. Such preferences can be represented
easily and properly by interval preference orderings but cannot
be depicted by any other structures (Fan & Liu, 2010). Generally,
the decision may be made by a group of DMs. For the above exam-
ple, the investment company has a group of departments, each
department is directed by a DM, and each DM is an information
source, and gives his/her interval ordinal preference orderings.
Therefore, the GDM problem with interval ordinal preference
orderings is an important research topic and received attention re-
cently. González-Pachón and Romero (2001) proposed a method to
aggregate the partial orders within a distance-based framework,
and used the interval goal programming method to solve it. Gon-
zález-Pachón, Rodríguez-Galiano, and Romero (2003) used an
interval goal programming method to deal with multi-criteria
decision making problem with both interval preference orderings
and pairwise comparison matrix where reciprocity and/or consis-
tency are not verified. Fan and Liu (2010) proposed a possibility de-
gree formula to compare two interval ordinal preference orderings,
and then a collective expectation possibility degree matrix was
built, and the optimization model was constructed to solve the
GDM problem with interval preference orderings. All the above ap-
proaches to deal with GDM problems with exact ordinal data or
interval preference orderings are assumed that all the experts have
the same importance or the relative importance information of the
experts is known. But this is sometimes unsuitable to depict the
actual situations because the experts come from various research
domains and do not have sufficient knowledge outside the scope
of their domains, and hence they could not evaluate all aspects
of the problem considered. Consequently, the individual experts
necessitate different weights in the GDM process. In order to solve
this problem, more recently, Xu (2013) established a nonlinear
programming model by minimizing the divergences between the
individual interval preference orderings and the group’s options,
from which he derived an exact formula to determine the experts’
relative importance weights. However, as pointed out in Section 2
of this paper, the quadratic programming model has the drawback
that the derived weights are always the same for each expert. This
obeys his initial intention and makes the model redundant.

In this paper, we put forward a distance-based optimization
model to derive the relative weights for experts in the GDM with
interval preference orderings, then the linear weighted arithmetic
averaging operator is used to obtain the collective virtual interval
preference orderings. The proposed distance-based approach as-
sesses the weights by minimizing the sum of squared distances be-
tween any two weighted interval preference orderings. The is the
basic principle for generating an aggregated decision result.

The paper is organized as follows. Section 2 briefly reviews Xu
(2013)’s method to derive the weights for group experts based
on interval preference orderings, and some comments on draw-
backs are pointed out. Section 3 develops a distance-based optimi-
zation model to determine the DMs’ weights, then by using the
weighted arithmetic averaging operator, we obtain the aggregated
virtual interval preference orderings. We develop a possibility de-
gree formula to compare two virtual interval preference orderings,
then rank and select the alternative(s). In Section 4, two numerical
examples are illustrated and comparative analysis are provided to

show the advantages of the proposed method. This paper is con-
cluded in Section 5.

2. A review of Xu’s method for GDM model based on interval
preference orderings

In this section, we introduce the notion of interval preference
orderings which was provided by Fan and Liu (2010). And then
we review Xu (2013)’s method for GDM model based on interval
preference orderings.

Definition 1 Fan & Liu, 2010. Let Z+ be the positive integer set. The
interval preference ordering is expressed as ~r ¼ ½r�; r� þ 1; . . . ;

rþ � 1; rþ�;where r�; rþ 2 Zþ; r� 6 rþ. r� and r+ are the lower and
upper bounds of the ordinal interval preference ordering ~r.
Particularly, if r� = r+, then the ordinal interval preference ordering
~r is reduced to an exact preference ordering. For simplicity of
representation, ~r ¼ ½r�; r� þ 1; . . . ; rþ � 1; rþ� is denoted as
~r ¼ ½r�; rþ�.

For a GDM problem, let X ¼ fx1; x2; . . . ; xngðn P 2Þ be a finite set
of alternatives and E ¼ fe1; e2; . . . ; emgðm P 2Þ be a finite set of
DMs, whose weight vector k ¼ ðk1; k2; . . . ; kmÞT is to be determined,
where kk P 0; k ¼ 1;2; . . . ;m;

Pm
k¼1kk ¼ 1. If all the experts are the

same importance, then kk ¼ 1=m; k ¼ 1;2; . . . ;m. However, in prac-
tical GDM problems, the experts may come from different research
areas, and have distinct professional knowledge related to the
problem domain, in these cases, the experts should be assigned dif-
ferent weights. The expert ek provides his/her uncertain prefer-
ences on the set X, as a set of n interval preference orderings,eOðkÞ ¼ f~oðkÞ1 ; ~oðkÞ2 ; . . . ; ~oðkÞn g, where ~oðkÞi ¼ o�ðkÞi ; oþðkÞi

h i
represents an

interval-valued preference ordering given by the expert ek to the

alternative xi, each ~oðkÞi consists of a collection of positive integers

ranked in increasing order. For example, ~oðkÞi ¼ ½1;3� represents
the possible ranking ordinals of an alternative of xi given by the ex-
pert ek may be first, second and third. It is naturally assumed that

the smaller ~oðkÞi , the better the alternative xi.
To obtain the collective option for the group, Xu (2013) em-

ployed the Weighted Arithmetic Averaging (WAA) operator:

~oi ¼ o�i ; o
þ
i

� �
¼
Xm

k¼1

kk~oðkÞi ¼
Xm

k¼1

kko�ðkÞi ;
Xm

k¼1

kkoþðkÞi

" #
; for all

i ¼ 1;2; . . . ;n ð1Þ

to aggregate individual interval preference orderings eOðkÞ ¼
~oðkÞ1 ; ~oðkÞ2 ; . . . ; ~oðkÞn

n o
ðk ¼ 1;2; . . . ;mÞ into a set of collective interval

preference orderings eO ¼ f~o1; ~o2; . . . ; ~ong, i.e., o�i ¼
Pm

k¼1kko�ðkÞi and

oþi ¼
Pm

k¼1kkoþðkÞi ; i ¼ 1;2; . . . ;n.
Clearly, a key issue in applying the WAA operator is to deter-

mine the weight vector k. If each individual’s interval preference
orderings are consistent with the collective interval preference

orderings, then eOðkÞ ¼ eO, i.e.,

o�ðkÞi ¼
Xm

l¼1

klo
�ðlÞ
i ; oþðkÞi ¼

Xm

l¼1

klo
þðlÞ
i ; for all i ¼ 1;2; . . . ;n;

k ¼ 1;2; . . . ;m ð2Þ

However, Eq. (2) generally does not hold. Thus, Xu (2013) intro-

duced a deviation variable ~dðkÞi as:

~dðkÞi ¼ o�ðkÞi �
Xm

l¼1

klo
�ðlÞ
i

 !2

þ oþðkÞi �
Xm

l¼1

klo
þðlÞ
i

 !2

; for all

k ¼ 1;2; . . . ;m; i ¼ 1;2; . . . ;n ð3Þ

and constructed a quadratic deviation model:
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