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a b s t r a c t

Many quality characteristics encountered in the food industry are compositional proportions, e.g. protein
percentage in milk powder. The distributions of these quality characteristics are intrinsically not normal
as well as cannot be well-approximated by it. Moreover the shape of underlying distribution of the
quality characteristic in each lot is likely to change in a short-run production process due to process
adjustment actions and heterogeneity in raw materials. As a result, the standard variables sampling plans
based on the normal distribution are not appropriate. The impact of measurement error, which is often
strongly present in analytical testing, has not yet been well-addressed in the non-normal variables
sampling inspection procedures. This paper proposes a computer-aided procedure for the identification
of the underlying distribution, adjustment for the measurement error, and then the design of the
sampling inspection plan. The weighted kernel deconvolution approach is employed for measurement
error adjustment and a new procedure for designing a variables plan allowing for uncertainty in the
shape parameters of the underlying distribution is developed.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Compositional proportions such as protein percentage in milk
powders are often key quality characteristics in the food industry.
The distribution of these quality characteristics are naturally
bounded in the unit interval and often effectively supported by a
narrower interval. Non-normal distributional features such as
skewness and excess kurtosis are also observed in practice. Hence
the underlying distribution for compositional characteristics is
intrinsically not normal. The normal approximation is also poor.
As a result, the normal distribution based variables acceptance
sampling procedures given in ISO/FDIS 3951-1:2004 E (2004) are
not adequate for compositional proportions.

The effect of non-normality on the performance measures of
variables sampling plans such as OC (operating characteristic)
curves and (producer’s and consumer’s) risks is discussed in Das
and Mitra (1964), Singh (1966) and more recently in Aslam and
Jun (2010). However, the problem of designing non-normal
variables acceptance sampling plan, particularly for compositional
proportions supported on a bounded interval, is still far from being
resolved.

The two popular approaches to tackle non-normality are (i)
applying a normalizing-transformation to transform the observed
data to normal (as suggested in Section 9.5.8, Stephens (2001)
etc.) and (ii) developing sampling plans assuming a known
non-normal distribution e.g. Tsai and Wu (2006), Aslam and Jun
(2010) etc. The former is based on an implicit assumption that
the transformed data follow a normal distribution, which is often
invalid. For example, the beta-distributed data can never be
transformed to normal by Box-Cox transformation (Box & Cox,
1964), even though the transformed data may sometimes pass
the normality tests. For the latter approach, only a few types of
distributions, which do not include bounded distributions, provide
an analytical expression for OC curves of sampling plans. More-
over, the shape parameters for the distributions are usually
assumed known, as shown in other recent papers dealing with
the design of non-normal acceptance sampling plans (see Aslam
& Jun, 2009, 2013; Aslam, Azam, & Jun, 2013; Aslam, Lio, & Jun,
2013; Aslam, Balamurali, Jun, & Ahmad, 2013; Tsai, Lu, & Wu,
2008, etc.), which is often not in line with the reality.

In this paper, we establish a general framework to handle the
performance measurement and design of the variables acceptance
sampling plans for quality characteristic allowing for (non-normal)
continuous parametric distributions, including but not limited to
compositional proportions with bounded distributions. The
Monte-Carlo simulated OC curves are employed to overcome the
obstacle due to unavailability of their analytical counterpart. A
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computer-aided system is developed due to lack of analytical solu-
tions and the concept of estimated OC curves is introduced to cope
with the situation of unknown shape parameters.

Another focus of this paper is the adjustment for measurement
errors. Although the standard acceptance sampling plans are
usually designed without consideration of the measurement
errors, they are unavoidably present in practice and may have a
significant impact on the performance of the sampling plans. This
issue is discussed by many researchers such as Owen and Chou
(1983), and a straightforward approach is to adjust the empirical
distribution of the observed data such that the acceptance
sampling procedures can be conducted based on an error-adjusted
empirical distribution. This can be achieved by a variance separa-
tion approach (Hahn, 1982), when both quality characteristic and
measurement error are normally distributed. However, when the
underlying quality characteristic is not normally distributed, a
feasible solution has not been established to the best of our
knowledge.

Under the commonly used and simplest additive measurement
error model, the observed data Y is represented as the sum of true
quality characteristic X (with density f) and the measurement
error E (with density p). Under the assumption that X and E are
independent and p is known, the density g of Y is simply the
convolution of f and p. However, for non-normally distributed
X, it is rare that analytical form of g can be obtained. Therefore,
fitting observed data to the convoluted distribution g to gain
the knowledge of f by analytical deconvolution is not feasible in
most cases. Hence we may attempt to fit the empirical data to
the distribution of X directly but this empirical knowledge about
the distribution of X is not directly observable. Inspired by the
recent progresses in nonparametric and semi-parametric density
deconvolution using weighted kernel estimators (Hazelton &
Turlach, 2008, 2010), we propose to use the observed data
fYigf16i6ng in conjunction with an appropriate set of estimated
weights fŵigf16i6ng to describe the empirical knowledge of the
error-adjusted (which mimics the true) distribution, such that
the distribution of X can be estimated. The acceptance sampling
procedures based on this error-adjusted distribution can therefore
(at least partially) eliminate the impact of the measurement
errors.

The layout of this paper is as follows. Section 2 reviews the esti-
mation of the underlying distribution in a general framework and
shows the extra difficulty brought by extending underlying distri-
bution from normal to more general distributions. In Section 3, an
algorithm for designing variables sampling inspection plans for
non-normal distribution with unknown shape parameter is pro-
posed. The identification of underlying distribution of the compo-
sitional proportions is discussed in Section 4. The proposed
measurement error adjustment method is presented in Section 5.
The final Section 6 contains the concluding remarks.

2. Test statistic and OC curve for unknown underlying
distribution

Before trying to establish a general framework of designing
variables acceptance sampling plans for (non-normal) continuous
parametric underlying distributions, it is necessary to first review
the relationships of the test statistic and the OC curve with the
underlying distribution. It is also necessary to figure out what
new problems arise when the underlying distribution is extended
from normal to general non-normal distributions. It is worth
pointing out that the ‘‘general’’ distributions we refer to are
continuous parametric distributions (with location and/or scale
parameters) and this setting is sufficient for most cases in
practice.

2.1. Measure of quality

Consider the distribution of a quality characteristic X being
FXðx; h0Þwith parameters vector h0, the lot quality measure is often
the proportion nonconforming (or the proportion of defectives) p,
which is the probability of X falling into a region of nonconfor-
mance RNC . That is, p is given by

p ¼ Pr X 2 RNC
� �

¼ FX RNC ; h0

� �
: ð1Þ

When a single specification limit (say L, the lower specification) is
specified, or equivalently the nonconformance region being
ð�1; L�; p becomes a monotone function of the specification limit,
i.e.

p ¼ FXðL; h0Þ: ð2Þ

2.2. Test statistic

The true proportion nonconforming p is never known because
error-free 100% inspection is seldom possible. Therefore, the best
knowledge we can get about the lot quality p is an appropriate esti-
mate p̂, and this becomes a natural test statistic to judge the qual-
ity of the lot. In the context of acceptance sampling, the test
statistic leads to acceptance (or rejection) decisions. Consider the
decision criteria involving an acceptance constant p� (also called
maximum allowable proportion nonconforming), such that p̂ 6 p�

(p̂ P p�) becomes the acceptance (rejection) criterion.
The choice of the test statistics or decision variables are not

unique. Any strictly monotone function h of a test statistic p̂ is
also an eligible test statistic since fp̂ 6 p�g is equivalent to
fhðp̂Þ 6 hðp�Þg. For example, for normal distribution and single
(lower) specification limit, we may choose

p̂ ¼ FXðL; ĥÞ ¼ U L; X; s
� �

¼
Z L

�1

1
s
ffiffiffiffiffiffiffi
2p
p e�

x�X
s

� �2

dx ¼
Z 1

�X�L
s

/ðzÞdz

¼
Z 1

QL

/ðzÞdz; ð3Þ

where X and s are the usual sample mean and standard deviation, as
the test statistic. This method is known as the M-method in
Schilling and Neubauer (2009) but we prefer to call it the p̂-method
in this paper. It is not difficult to see its equivalence to the most
popular k-method where QL is the test statistic, if the strictly mono-
tonic relation between p̂ and QL is noticed. However, this equiva-
lence between p̂ and QL is not valid if the underlying distribution
FX has shape parameters since p̂ contains knowledge of shape
parameters but QL does not.

Therefore, for acceptance sampling procedures under general
distributions, in particular those with shape parameters, the p̂-
method is preferred.

2.3. OC curve

The operating characteristic function (curve) plays central role
in the design and implementation of acceptance sampling plans.
It measures the performance of a particular sampling plan and is
also the basis of choosing target sampling plans which satisfies
specific risk management requirements. The OC curve is defined
as a function giving the probability of lot acceptance Pa for a given
proportion nonconforming p. In the case of a single sampling plan,
the acceptance probability is given by

Pa ¼ Pr p̂ 6 p�jpð Þ; ð4Þ

and this expression implies that the behavior of the OC curve is gov-
erned by the distribution of the test statistic p̂ conditional on p.
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