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a b s t r a c t

Deadlock-free control and scheduling are two different problems for flexible manufacturing systems
(FMSs). They are significant for improving the behaviors of the systems. Based on the Petri net models
of FMSs, this paper embeds deadlock control policies into heuristic search algorithm, and proposes a
deadlock-free scheduling algorithm to minimize makespan for FMSs. Scheduling is performed as heuris-
tic search in the reachability graph of the Petri net. The searching process is guided by a heuristic function
based on firing count vectors of state equation for the Petri net. By using the one-step look-ahead method
in the optimal deadlock control policy, the safety of a state is checked. Experimental results are provided
to show effectiveness of the proposed heuristic search approach in deadlock-free scheduling for FMSs.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Flexible manufacturing systems (FMSs) are modern production
facilities that are highly adaptable to different production plans. An
FMS includes the material transportation system, the buffer, the
work-piece warehouse and other resources besides the processing
equipments. In an FMS, various parts are concurrently processed
and have to share common resources, and then deadlocks may
occur during the processing, which are undesirable phenomena.
In deadlock situations, the whole system or a part of it remains
indefinitely blocked and cannot terminate its task. Therefore, it is
highly important to develop efficient control and scheduling
algorithms to optimize the system performance while preventing
deadlock situations.

The deadlock has been extensively studied from the control
viewpoint, and many deadlock control methods have been pro-
posed (Abdallah & Elmaraghy, 1998; Chu & Xie, 1997; Ezpeleta,
Colom, & Martinez, 1995; Fanti, Maione, & Turchiano, 2001; Fanti
& Zhou, 2004; Huang, Jeng, Xie, & Chung, 2001; Piroddi, Cordone,
& Fumagalli, 2008; Reveliotis & Ferreira, 1996; Xing, Hu, & Chen,
1996; Xing, Zhou, Liu, & Tian, 2009; Xing, Zhou, Wang, Liu, &
Tian, 2011). They can guarantee the deadlock-free operation of

FMS, but do not take operating time into account. Only a few stud-
ies address the scheduling problem of deadlock-prone FMSs. Such
a problem involves not only the optimization of certain objective
function but also the handling of deadlock problems, and therefore
is more complex. Ramaswamy and Joshi (1996) provided a mathe-
matical model for a deadlock-free scheduling problem of FMSs
with material handing devices and limited buffers, a Lagrangian
relaxation heuristic algorithm was used in this paper to simplify
the models to search for the optimized average flow time. Jeng
and Chen (1998) developed a heuristic algorithm based on the
best-first search technique for scheduling FMSs. Abdallah,
Elmaraghy, and Elmekkawy (2002) used timed Petri nets (PNs) to
model FMSs and proposed a scheduling algorithm. The algorithm
generates a partial reachability graph to find the optimal or near-
optimal deadlock-free schedule in terms of the firing sequence of
transitions in the PN model. Xu and Wu (2004) developed a genetic
algorithm based on PN with infinite buffers. They analyzed the
deadlock that might occur in the obtained scheduling and added
some necessary buffers to avoid the deadlock. Golmakani, Mills,
and Benhabib (2006) proposed an automata-based approach to
minimize the makespan for deadlock-free scheduling of FMSs.
Dashora, Kumar, Tiwari, and Newman (2007) applied extended col-
ored timed PN to model the dynamic behavior of simple sequential
processes with resources. A deadlock-free schedule with mini-
mized makespan based on an evolutionary endosymbiotic learning
automata algorithm was presented. Wu and Zhou (2007) studied a
real-time deadlock-free scheduling problem for semiconductor
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track systems based on colored timed resource-oriented PN. A
deadlock avoidance policy (DAP) was used as a lower layer control-
ler. With the support of the DAP, heuristic rules were proposed to
schedule the system in real time. Xing, Han, Zhou, and Wang
(2012) embedded a deadlock avoidance policy into genetic algo-
rithm to develop a deadlock-free scheduling algorithm for FMSs
to minimize the makespan. Based on the deadlock search
algorithm (Xing et al., 2009), a one-step look-ahead method was
developed to avoid deadlocks by amending the feasibility of chro-
mosomes. A deadlock-free schedule can be obtained.

Branch-and-bound methods (Hariri & Potts, 1997; Lee & Kim,
2004) can obtain optimal solutions of scheduling problems. Their
main disadvantage is enumerating large number of nodes. Other
search methods such as A⁄ search algorithm (Jeng & Chen, 1999;
Lee & DiCesare, 1994; Reyes, Yu, & Kelleher, 2002a; Reyes, Yu,
Kelleher, & Lloyd, 2002b; Xiong & Zhou, 1998), which is based on
branch-and-bound method, attempts to generate and evaluate
fewer number of nodes by branching only the most promising
nodes at each stage of the search. None of the search methods
mentioned above takes into account the deadlock problem. In
order to generate deadlock-free schedules, Deadlock detection
and prevention mechanism is required to be incorporated into
the searching process. This can be done by precisely representing
the FMS’s discrete-event dynamic behavior to prevent encounter-
ing deadlock states. PNs are commonly accepted technique that
can explicitly represent the characteristics of FMS.

For an FMS modeled by PN, an optimal schedule can be
obtained by generating the reachability graph and finding the opti-
mal path from the initial marking to the final marking based on a
given measure of performance. When constructing the reachability
graph, deadlock states are designated and the paths to those states
are terminated to prevent the system from encountering them. A
hybrid heuristic search (Xiong & Zhou, 1998) based on A⁄ search
algorithm was applied to determining a deadlock-free schedule
with respect to the makespan criterion, assuming that each part
has only one route to be produced. For PN methods, deadlock rec-
ognition is carried out as the schedule is generated and thus, it has
to be repeated for every new batch of parts.

Based on the literature, deadlock control and scheduling focus
on different sides in their approach. The scheduling emphasizes
optimizing the performance of the systems, where the schedule
performance is generally defined in terms of the movement of
parts through the entire system. In contrast, deadlock control
focuses on avoiding or preventing the system from entering into
deadlock states. The traditional scheduling of a job shop or a flow
shop with the scale m � n, meaning m machines and n parts,
assumes that the system has enough buffers or human presence,
and considers problems with no deadlock (Pineo, 2000). If the
given buffer space is limited, the deadlock freedom of the systems
with its obtained schedule cannot be guaranteed. Thus, it is neces-
sary and useful to integrate deadlock control and scheduling
together in practice.

In this paper, a new heuristic search method for deadlock-free
scheduling of FMS is proposed. This method is described as follows.
First, an FMS is modeled as a P-timed PN. A deadlock-free schedul-
ing problem that minimizes the makespan is formulated as search-
ing the reachability graph of the PN. The searching process is
guided by a heuristic function based on solution of the state equa-
tion, called firing count vector, to predict the total time from the
initial marking through the current marking to the final marking.
In addition, linear algebraic techniques can be used to obtain an
approximate solution of the state equation. Furthermore, this
paper uses a one-step look-ahead method for checking the safeness
of the next marking in the searching process, and develops a dead-
lock-free scheduling algorithm. The primary contributions of this
paper are the application of the heuristic search based on the state

equation for PN to the deadlock-free scheduling problem for the
first time and the utilization of DAP in our scheduling problem.

The outline of the paper is organized as follows. Section 2 intro-
duces PN modeling of FMSs for scheduling and reviews deadlock
PN controller used in this paper. Section 3 establishes a dead-
lock-free heuristic scheduling method by imbedding DAP into the
heuristic search algorithm. Two examples to show the effective-
ness of the proposed scheduling algorithms are given in Section 4.
Section 5 gives conclusions.

2. PN models and their DAPs

This section first introduces some definitions and notations of
PNs, and then the P-timed PN model of FMS and DAPs for FMS used
in this paper.

2.1. Basic PN definitions

A PN is a three-tuple N = (P,T,F), where P = {p1,p2, . . . ,pm} is a
finite set of places, T = {t1, t2, . . . , tn} is a finite set of transitions with
P [ T – £ and P \ T = £ F # (P � T) [ (T � P) is the set of directed
arcs. Given a net N = (P,T,F), and a node x 2 P [ T, the preset of x is
defined as �x = {y 2 P [ Tj(y,x) 2 F}, and the postset of x is defined as
x� = {y 2 P [ Tj(x,y) 2 F}. A marking or state of N is M: P ! Zþ,
which denotes the number of tokens in each place, where
Zþ ¼ f0;1;2;Kg. A PN N with an initial marking M0 is called a
marked PN, denoted as (N,M0).

A transition t 2 T is enabled at a marking M, if "p 2 �t, M(p) > 0;
this fact will be denoted as M[ti. An enabled transition t at M can be
fired, resulting in a new reachable marking M0, denoted by M[tiM0,
where M0(p) = M(p) � 1, "p 2 �tnt�, M0(p) = M(p) + 1, "p 2 t�n�t, and
otherwise, M0(p) = M(p). A sequence of transitions a = t1t2 . . . tk is
feasible from a marking M if Mi[tiiMi+1, i = 1, 2, . . . , k, where
M1 = M, and Mi, i = 1, 2, . . . , k + 1, are called reachable markings
from M. Let R(N,M) denote the set of all reachable markings of N
from M.

The incidence matrix D = [cij] of PN is a matrix D: P � T ?
{�1,0,1} such that cij = 1 if tj 2 �pinpi

�, cij = �1 if tj 2 p�i n� pi, and
cij = 0 otherwise. The kth firing vector xk is an n � 1 column vector
of n � 1 zeros and one nonzero entry, a value of one in the ith posi-
tion implies that transition ti fires at the kth firing. The kth column
of the incidence matrix D denotes the change of the marking as the
result of firing transition tk, then Mk = Mk�1 + Dxk. Suppose that the
final marking Mf is reachable from the current marking M through
a firing sequence x1, x2, . . . , xs, then the state equation for PN is
written as Mf = M + D(x1 + x2 + � � � + xs). We obtain

Du ¼ DM

where DM = Mf–M, u = x1 + x2 + � � � + xs is an n � 1 column vector of
nonnegative integers and is called the firing count vector.

The composition of two PNs, Ni = (Pi,Ti,Fi), i 2 {1,2}, via the same
elements, denoted as N1 � N2 = (P,T,F), where P = P1 [ P2, T =
T1 [ T2, and F = F1 [ F2.

2.2. P-Timed PN scheduling models of FMSs

An FMS consists of m types of resources and can processes n
types of parts. The set of resource type is denoted as R = {ri, i = 1,
2, . . . , m}. The capacity of a resource type ri is an integer, denoted
as C(ri), indicating the maximum number of parts that such type
of resources can simultaneously hold. The set of part type is
denoted as Q = {qi, i = 1, 2, . . . , n}. The number of type-qi parts to
be processed is u(qi). A processing route of a part is a sequence
of operations. A part may have more than one route and can choose
its route in the processing. Let a type-q part have k processing
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