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a b s t r a c t

The fixed-route vehicle-refueling problem (FRVRP) is a difficult combinatorial problem that is used exten-
sively in the US truckload industry to manage fuel costs. This paper proposes a preprocessing technique
for the FRVRP that cuts the problem size noticeably without eliminating the optimal solution(s), which
allows users to enlarge the size of solvable instances or save the CPU time of solving the problem dramat-
ically. Empirical testing with real-world instances shows that our method: (i) reduces the problem size by
54.8% and (ii) solves the FRVRPs to optimality in roughly 1/4 of the time it is currently taking.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Given the recent trend of raising fuel cost, the efficient manage-
ment of fuel cost has become an important issue for all the modes
of transportation (see, e.g., Kuo, 2010). In this paper we consider a
fuel-management decision problem widely used in the truckload
industry, called the fixed-route vehicle-refueling problem (FRVRP).
The FRVRP is a combinatorial problem which seeks the best refuel-
ing policy (sequence of fuel stations to use, along with the best
refueling quantity at each station) for a given origin–destination
route that minimizes a vehicle’s refueling cost. Although the FRVRP
is of interest in its own right, it is known to have a strong relation-
ship with the capacitated lot-sizing problem (CLSP) (e.g., Atamturk &
Kucukyavuz, 2005; Love, 1973), and has also received attention
from the researchers working in this area. The FRVRP is studied
extensively by practitioners too. Consulting companies have devel-
oped a class of software products called fuel optimizers for truck-
load carriers that solve the FRVRP to near optimality. These
products, which typically work with truck-routing software, first
compute the shortest route for a given origin–destination, and then
compute the refueling policy for this route by using the latest (up-
dated daily) fuel price data obtained from the OPIS (Oil Price Infor-
mation Service) database.

There are several variants, or extensions, of the FRVRP, most of
which address the vehicle-routing and the vehicle-refueling

problems jointly. These variants, which are often called the vari-
able-route vehicle-refueling problem (VRVRP), include the problems
proposed by (i) Suzuki and Dai (2012), which jointly considers the
shortest-route problem (SRP) and the FRVRP, (ii) Suzuki (2012),
which jointly addresses the traveling salesman problem with time
windows (TWPTW) and the FRVRP, (iii) Bousonville, Hartmann,
Melo, and Kopfer (2011), which jointly tackles the vehicle-routing
problem with time windows (VRPTW) and the FRVRP, and (iv)
Sweda and Klabjan (2012), which jointly considers the SRP and
the FRVRP for electric vehicles. From the perspective of researchers
studying these variants, the FRVRP is a sub-problem of their focal
problems (e.g., as part of ‘‘route first, refueling-policy second’’ ap-
proaches to the VRVRP), which suggests that the FRVRP solution
methods can be of great utility to these researchers too.

1.1. Types of FRVRP

To date, two types of FRVRP have been considered in the liter-
ature. The first, and the simpler, version makes the following
assumptions: (i) every fuel station (truck stop) is located ‘‘on the
route’’ so that the travel distance of a vehicle from origin to desti-
nation is unaffected by the choice of truck stops and (ii) refueling
quantity at each truck stop is not subject to a specific lower bound
(but must be non-negative). We denote this type of FRVRP as basic
FRVRP. The basic FRVRP can be viewed as a special case of CLSP
where we assume a fixed inventory capacity, zero setup cost, zero
inventory cost, and linear production cost function (Lin, Gertsch, &
Russell, 2007). The basic FRVRP can be formulated as a pure
network optimization problem, which can be easily solved to
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optimality by using the standard linear-programming techniques.
Efficient exact methods that are designed specifically to solve the
basic FRVRP are also available. Lin et al. (2007) proposed an O(n)
greedy algorithm, where n is the number of truck stops available
between origin and destination, and Khuller, Malekian, and Mestre
(2008) proposed an O(n logn) algorithm.

The second version relaxes the two assumptions used in the ba-
sic FRVRP; i.e., it considers both the minimum refueling quantity
(q P 0), and the out-of-route miles for each truck stop (ei P 0,
i = 1, 2, . . . , n; which reflects the distance a truck must divert from
the primary route to reach station i). We denote this type of FRVRP
as complex FRVRP. The complex FRVRP is a generic form of the basic
FRVRP, as the latter can be viewed as a special case of the former
where q = 0 (or q = theoretical lower bound of the refueling quan-
tity per stop implied by the parameters) and ei = 0 " i = 1, 2, . . . , n.
The significance of considering q and ei are as follows. First, q al-
lows users to not only control the frequency of fuel stops, but also
give truck drivers some benefits at truck stops (e.g., many truck
stops give free showers, free overnight parking, or discount meal
coupons to drivers who buy 50 gallons or more). Second, ei affects
the ‘‘attractiveness’’ of truck stops such that the larger the ei, the
less attractive the truck stop i (e.g., if ei > ej, i may be less attractive
than j even if i has cheaper price than j, because a vehicle must
burn more fuel to reach i than to reach j). This second condition im-
plies that, if we ignore ei in an FRVRP, we may find sub-optimal
solutions (it is worth noting that ei > 0 for most fuel stations found
on major US highways).

Since q and ei are important parameters that control both the
quality of solutions and the ‘‘driver satisfaction’’ with the policies,
all commercial fuel optimizers use the complex FRVRP. Our inter-
views with four US truckload carriers (all of which are fuel-opti-
mizer users) also indicate that they strongly prefer the complex
FRVRP to the basic FRVRP for the following reasons. First, they pre-
fer to use q of at least 50 gallons to make their drivers happy (give
benefits at truck stops), so that they can attain high rate of driver
compliance to refueling instructions (see Suzuki (2009), for similar
claims). Second, they believe that, typically, cheap truck stops are
located ‘‘off’’ the major highways (ei > 0), so that if we ignore ei

the resulting solution may tend to choose the stations with large
ei values, which is not only sub-optimal but also inconvenient for
truck drivers. Since all of the above conditions suggest that the
complex FRVRP is preferred to the basic FRVRP, we focus on dis-
cussing the complex FRVRP in the remainder of this paper.

1.2. Current approaches to complex FRVRP

The complex FRVRP has been explored by a limited number of
studies to date. The complex FRVRP can be viewed as a single-item
CLSP with a fixed production capacity, fixed minimum production
lot-size, fixed inventory capacity, non-negative and non-stationary
setup cost, zero inventory cost, and linear (but time-varying) pro-
duction cost function. The single-item CLSP with set up costs itself
is already NP-hard (Karimi, Fatemi Ghomi, & Wilson, 2003; Okhrin
& Richter, 2011), and both the inventory capacity and the lower
bound in lot-sizing add extra complexities to the problem (the
added complexities of including inventory bounds in CLSP are well
documented in Atamturk and Kucukyavuz (2005), and those of
including the minimum lot size in CLSP are discussed in Constan-
tino (1998) and Okhrin and Richter (2011)). These conditions sug-
gest that it may be difficult to develop efficient optimal algorithms
for the complex FRVRP. Although some efficient algorithms exist
that can solve the CLSP with inventory bounds (e.g., Gutierrez,
Sedeno-Noda, Colebrook, & Sicilia, 2002) or the CLSP with mini-
mum lot sizes (e.g., Okhrin & Richter, 2011), we are not aware of
any efficient algorithm that can solve the CLSP with both the

inventory bound and the minimum lot size, along with the setup
cost, production capacity, and time-varying production costs.

Currently, two approaches are available for solving the complex
FRVRP. The first is to use heuristic methods (all fuel optimizers em-
ploy this approach).1 The major limitation of this approach is that it
may not produce quality solutions. This approach also seems to suf-
fer from the limited size of solvable instances, as most fuel optimiz-
ers cannot handle large problems (possibly because of memory
limitations or restrictions on running time). ProMiles, for example,
one of the most-widely used fuel optimizers in the field, cannot solve
instances for which n > 250. The second approach is to use exact
methods. To the best of our knowledge, the only study that proposed
an exact method for the complex FRVRP is Suzuki (2008), which used
a mixed-integer linear programming approach. This method, how-
ever, relies on a branch-and-bound technique, so that its solution
time grows exponentially with the problem size (n). This means that,
perhaps, the method cannot solve large FRVRP instances efficiently.

The above paragraph indicates that the existing techniques for
the complex FRVRP suffer from either: (i) solution quality and
the limited size of solvable instances (heuristics), or (ii) relatively
long CPU time when n is large (exact method). This is the major
point of concern for many truckload carriers, as they are frequently
required to solve large complex FRVRPs with more than 400 truck
stops within very narrow time windows. This issue becomes even
more important in the future, because the practical size of the
FRVRP is growing rapidly. As a result of the advancement in infor-
mation technology, carries now have more accurate data on future
load tenders, which allows them to incorporate two or more loads
into one refueling problem to generate better solutions (e.g., if we
know that a truck going to point A will visit point B subsequently,
we can derive a better FRVRP solution by solving the combined
problem that considers both legs; see. e.g., Suzuki, 2009). This sug-
gests that, currently, the existing complex FRVRP methods, none of
which can handle large instances efficiently, may be providing lim-
ited practical values.

1.3. Proposed approach and study goal

One way to efficiently solve large complex FRVRPs is to develop
a preprocessing technique that allows us to reduce the problem size
(n), prior to solving the problem, by removing those truck stops that
are guaranteed not to be chosen as the refueling points by the opti-
mal policy. This approach has several interesting features from the
practical standpoint. First, since this technique merely reduces the
problem size, it can be combined with any existing method, heuris-
tic or exact, to cut the computational effort of solving the complex
FRVRP (it can also be combined with any basic FRVRP technique,
since the complex FRVRP is a generic form of the basic FRVRP). Sec-
ond, this technique can be used in conjunction with commercial
fuel optimizers to help these products solve large problems that
are currently beyond their capabilities. Third, if combined with fuel
optimizers, this technique may possibly improve (in some in-
stances) the solution quality of these products because, given that
it removes only the ‘‘unpromising’’ part of the feasible region, the
use of this technique should not worsen the solution quality.

Given these features this paper develops a preprocessing tech-
nique that allows us to reduce truck stops in an FRVRP substan-
tially without eliminating the optimal solution(s). Development
of such a technique has significant practical values. First, it allows

1 It is not clear how the FRVRP is solved by fuel optimizers, as fuel-optimizer
vendors are reluctant to provide the details of their solution methods (we contacted
multiple software vendors, but they all refused to provide the details). We suspect
that they may be using a simple method in which they first identify the set of
cheapest truck stops along the shortest route, and then choose a few truck stops from
this set by using a construction-type heuristic.
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