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a b s t r a c t

In this paper, we consider a new class of queueing models with working breakdowns. The system may
become defective at any point of time when it is in operation. However, when the system is defective,
instead of stopping service completely, the service continues at a slower rate. Using the probability gen-
erating function, we give the joint distribution of the server state and the number of customers in the
system in steady state. We also derive the necessary and sufficient condition for the existence of the
steady state. We study the waiting time distribution of our model. Finally, some performance measures
and numerical examples are presented.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

One important fact that has been overlooked is that perfectly
reliable servers are virtually nonexistent. In fact, the servers may
well be subject to lengthy and unpredictable breakdowns while
serving a customer. For example, in manufacturing systems the
machine may breakdown due to machine or job related problems.
This results in a period of unavailable time until the servers are re-
paired. Such a system with repairable server has been studied as a
queueing model and reliability model by many authors.

Cao and Cheng (1982) have considered an M/G/1 queueing
model with a repairable server. Li, Shi, and Chao (1997) have con-
sidered an M/G/1 queueing system with server breakdowns and
Bernoulli vacations and have discussed the mean number of cus-
tomers in the system. Krishna Kumar, Arivuadainambi, and Vija-
yakumar (2002) have considered an M/G/1/1 queueing model
with unreliable server and no waiting capacity. The server is as-
sumed to provide two types of services regular and optional with
the provision of server breakdown. Gray, Wang, and Scott (2004)
have considered a queueing model with multiple types of server
breakdowns. Wang (2004) studied an M/G/1 queue with a second
optional service and server breakdowns. Several authors have con-
sidered queueing models with N policy and server breakdowns.

From the mid-20th century, computer technology and networks
have been utilized in many areas including telecommunication,
flexible manufacturing, e-commerce and supply-chain systems.
These systems usually are operated under random environments

and congestion is often caused by the mismatch between variable
service capacity and random service demand. Therefore, it is
becoming increasingly important to study the performance charac-
teristics of such computer systems. There are situations in the real
world, where the breakdown of a server may not stop the service of
a customer completely.

For example, the presence of a virus in the system may slow
down the performance of the computer system. The computer sys-
tem may still be able to perform various chores but at a consider-
ably slower rate. However, in all the models considered so far of
queueing systems with server breakdowns, the underlying
assumption has been that a server breakdown disrupts the service
completely in the system. Another example is provided by the ma-
chine replacement problem. A machine may suddenly breakdown
when it is in operation. It is immediately replaced by another
standby machine which may work at a slower rate. As soon as
the broken down machine is repaired it is put back into service.
Here the failure of the machine does not stop the work completely.
However, in all the models considered so far of queueing systems
with server breakdowns, the underlying assumption has been that
a server breakdown disrupts the service completely in the system.
Motivated by this factor, we have therefore considered in this pa-
per a new class of queueing systems with working breakdowns.

This concept of working breakdowns is different from the con-
cept of working vacations, first formulated by Servi and Finn
(2002) and then considered by Liu, Xu, and Tian (2002), Jain and
Agrawal (2007), Tian, Zhao, and Wang (2008), Tian, Li, and Zhang
(2009), Wu and Takagi (2006), Li, Liu, and Tian (2010), Goswami
and Selvaraju (2010), Jain and Jain (2010), Zhang and Hou (2010),
Yang, Wang, and Wu (2010), Jain and Upadhyaya (2011), Li and
Tian (2011). A working vacation is taken only when the server
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has completed the service of all the customers present in the sys-
tem. However, a working breakdown, can occur at any time point
at which the server is busy with the service of a customer in the
system. Sridharan and Jayashree (1996) have considered a queue-
ing system with both partial and total failure of the server and a
finite capacity. However, they have assumed that the server breaks
down even when the server is idle. In our paper, we have assumed
that the server fails only in the operational state. We have consid-
ered an infinite capacity queueing system. We have derived the
necessary and sufficient condition for the stability of the system
and the waiting time distribution of our model.

The remaining part of the paper is structured as follows. The
next section gives a description of the queueing model. In Section 3,
we study the sufficient condition for the stability of our model. In
Section 4, we analyze the steady-state distribution of our queueing
system. Waiting time distribution of our model is discussed in Sec-
tion 5. Some performance measures are discussed in Section 6. In
Section 7, we give some numerical results. In Section 8, we give a
few concluding remarks and some suggestions for future research.

2. The M/M/1 model

We consider a single server queueing system. The arrivals are in
accordance with a Poisson process with a rate k. It is assumed that
when the server is busy, the server is subject to random break-
downs . The service times in the normal state are assumed to be
exponentially distributed with a parameter l. When the server
breaks down, the service rate decreases. The service times after a
breakdown of the server are assumed to be exponentially distrib-
uted with a parameter l1 < l. The time until the random break-
down of the server is assumed to be exponentially distributed
with a parameter a. The repair time of the server is assumed to
be exponentially distributed with a parameter b. The interarrival
times, the service times, the repair times and the failure times
are assumed to be mutually independent of each other. Let C(t)
be the server state at time t. Then

CðtÞ ¼
1; the server is in normal state
2; the server is defective

�

Let N(t) be the number of customers in the system at time t. Then
{(C(t),N(t)), t P 0} is a continuous time Markov chain. Let

Pi;nðtÞ ¼ ProbfCðtÞ ¼ i;NðtÞ ¼ ng; i ¼ 1;2: and n P 0

3. A sufficient condition for the stability of the system

Let us investigate the stability condition of our model. Let {tr;
r 2 Z+} be the sequence of epochs at which either an arrival occurs,
a service completion occurs, working breakdown occurs or system
returns to normal state after repair. Lr = (C(tr),N(tr)) be the system
state just after the time tr. Thus the sequence of random vectors {Lr;
r P 1} forms a Markov chain with state space E = {(i,n): i = 1,2 and
n P 0}.

Theorem 1. The inequality q ¼ kðaþbÞ
al1þbl < 1 is a sufficient condition for

the system to be stable.

Proof 1. It is easy to see that {Lr; r P 1} is an irreducible and ape-
riodic Markov chain. To prove positive recurrence, we may use Fos-
ter’s criterion, which states that an irreducible and aperiodic
Markov chain vi with state space S, a sufficient condition for the
ergodicity is the existence of a nonnegative function f(s), s 2 S
and � > 0 such that the mean drift

xs ¼ E½f ðviþ1Þ � f ðviÞjvi ¼ s�

is finite for all s 2 S and xs 6 �� for all s 2 S except perhaps a finite
number. In our case, we choose

f ðsÞ ¼
nþ B; if s ¼ ð1;nÞ
nþ B0; if s ¼ ð2;nÞ

�

where B and B0 are constants which will be determined later.
For n P 1,

xs ¼
ðB0�BÞaþk�l

aþkþl ; if s ¼ ð1;nÞ
ðB�B0 Þbþk�l1

kþbþl1
; if s ¼ ð2;nÞ

8<
:

The Markov chain {Ln; n P 1} is ergodic if the constants B and B0 are
chosen to satisfy the following conditions

ðB0 � BÞaþ k� l < 0
ðB� B0Þbþ k� l1 < 0

Therefore k�l1
b < B0 � B < l�k

a : This is possible only if k�l1
b < l�k

a . This
condition means that kðaþbÞ

al1þbl < 1, i.e., q < 1. Thus we have that

q < 1 is a sufficient condition for the ergodicity of {Ln; n P 1}. There-
fore, our system attains the steady state if q < 1.

4. Steady state analysis

In this section, we examine the steady state behavior of the sys-
tem. We therefore assume that q < 1. The steady state equations
governing the model are

kP1;0 ¼ lP1;1 þ bP2;0 ð4:1Þ
fkþ aþ lgP1;n ¼ kP1;n�1 þ lP1;nþ1 þ bP2;n; n P 1 ð4:2Þ
fkþ bgP2;0 ¼ l1P2;1 ð4:3Þ
fkþ bþ l1gP2;n ¼ kP2;n�1 þ l1P2;nþ1 þ aP1;n; n P 1 ð4:4Þ
Define partial probability generating functions as follows

P1ðzÞ ¼
X1
n¼1

P1;nzn ð4:5Þ

P2ðzÞ ¼
X1
n¼0

P2;nzn ð4:6Þ

Multiplying (4.1) and (4.2) by appropriate powers of z and summing
over n P 0, we obtain

fkzð1� zÞ þ azþ lðz� 1ÞgP1ðzÞ � bzP2ðzÞ ¼ kzðz� 1ÞP1;0 ð4:7Þ

Multiplying (4.3) and (4.4) by appropriate powers of z and summing
over n P 0, we obtain,

�azP1ðzÞ þ fkzð1� zÞ þ bzþ l1ðz� 1ÞgP2ðzÞ
¼ l1ðz� 1ÞP2;0 ð4:8Þ

Solving the Eqs. (4.7) and (4.8), we get

P1ðzÞ ¼
½kzðkz� l1Þð1� zÞ þ kbz2�P1;0 þ bl1zP2;0

½ðl� kzÞð1� zÞ � az�½ðl1 � kzÞð1� zÞ � bz� � abz2 ðz� 1Þ

ð4:9Þ

P2ðzÞ ¼
az2kP1;0 þ ½ð1� zÞðkzl1 � ll1Þ þ azl1�P2;0

½ðl� kzÞð1� zÞ � az�½ðl1 � kzÞð1� zÞ � bz� � abz2 ðz� 1Þ

ð4:10Þ

Now,

denominator of P1ðzÞ ¼ ½ðl� kzÞð1� zÞ � az�½ðl1 � kzÞ
� ð1� zÞ � bz� � abz2

¼ ð1� zÞ/ðzÞ
where /ðzÞ ¼ ðl� kzÞðl1 � kzÞð1� zÞ � azðl1 � kzÞ � bzðl� kzÞ
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