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a b s t r a c t

This paper presents a nonlinear inverse optimization approach to determine the weights for the joint dis-
placement function in standing reach tasks. This inverse optimization problem can be formulated as a bi-
level highly nonlinear optimization problem. The design variables are the weights of a cost function. The
cost function is the weighted summation of the differences between two sets of joint angles (predicted
posture and the actual standing reach posture). Constraints include the normalized weights within limits
and an inner optimization problem to solve for joint angles (predicted standing reach posture). The
weight linear equality constraints, obtained through observations, are also implemented in the formula-
tion to test the method. A 52 degree-of-freedom (DOF) human whole body model is used to study the
formulation and visualize the prediction. An in-house motion capture system is used to obtain the actual
standing reach posture. A total of 12 subjects (three subjects for each percentile in stature of 5th percen-
tile female, 50th percentile female, 50th percentile male and 95th percentile male) are selected to run the
experiment for 30 tasks. Among these subjects one is Turkish, two are Chinese, and the rest subjects are
Americans. Three sets of weights for the general standing reach tasks are obtained for the three zones by
averaging all weights in each zone for all subjects and all tasks. Based on the obtained sets of weights, the
predicted standing reach postures found using the direct optimization-based approach have good corre-
lation with the experimental results. Sensitivity of the formulation has also been investigated in this
study. The presented formulation can be used to determine the weights of cost function within any
multi-objective optimization (MOO) problems such as any types of posture prediction and motion
prediction.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Digital human modeling and simulation play an important role
in modern product design. Human modeling and simulation can
reduce the development time and the cost. Posture prediction is
a key component in digital human modeling and simulation. Three
methods are found in the literature to predict postures: the empir-
ical–statistical approach, the direct inverse kinematics approach,
and the direct optimization-based approach.

For the empirical–statistical method, thousands of experimen-
tal data are collected and processed by computer-aided software,
and then the data are analyzed statistically (Beck & Chaffin,
1992; Das & Sengupta, 1995; Faraway, Zhang, & Chaffin, 1999).
This approach is direct but not flexible. If the posture prediction
scenario changes, a new experiment has to be carried out. In the
inverse kinematics approach, a set of equations is used to find a

solution (Griffin, 2001; Kim, Gillespie, & Martin, 2004; Tang, Cavaz-
za, Mountain, & Earnshaw, 1999; Tolani, Goswami, & Badler, 2000;
Wang, 1999; Wang & Verriest, 1998). For the optimization-based
method, the key point is to find the minimum value of a cost func-
tion by meeting all the constraint requirements. There are some
performance measurements which act as cost functions; for exam-
ple, discomfort (Jung & Choe, 1996) and joint displacement (Jung &
Park, 1994; Zou, Zhang, Yang, Boothby et al., 2011; Zou, Zhang,
Yang, Cloutier et al., 2011) can be used as cost function when
formulating multi-objective optimization (Howard, Cloutier, Yang,
accepted; Yang, Marler, Kim, Arora, & Abdel-Malek, 2004). Deter-
mining the relative importance for different human performance
measures is a key issue in multi-objective optimization. Among
the methods (weighted sum method, min–max method and global
criterion method) used to obtain Pareto solutions of a MOO prob-
lem, the weighted sum method is commonly used.

To determine weights, a trial and error method is usually used
(Athan & Papalambros, 1996; Messac & Mattson, 2002; Yang
et al., 2004). Another approach is the self-adaptive weighted sum
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technique (Khan, 2009; Kim, 2004; Kim & Weck, 2005; Ryu, Kim, &
Wan, 2009; Zhang, Li, & Song, 2008). The basic idea is to change
weights adaptively within a searching region, rather than to adopt
a priori weights or to define inequality constraints. The third meth-
od is the consistency ratio method (Saaty & Vargas, 1991). In this
method, a hierarchy matrix is used to perform pair-wise compari-
sons, and the weights for all factors could be obtained. Then a
consistency ratio, representing the relationship between the judg-
ments and large samples of purely random judgments, could be
determined. The fourth method is to use the genetic algorithm in
weight calculations (Dong, Xu, Zou, & Chai, 2008; Rachmawati &
Srinivasan, 2006). In addition, Zhang, Domaszewski, and Fleury
(2001) presented a weighting method with a multi-bounds formu-
lation and convex programming for multi-criteria structural
optimization.

With 4 subjects and 18 targets for each subject, Zou, Zhang,
Yang, and Gragg (2012) proposed a systematic approach to obtain
a set of weights in upper body posture prediction and also devel-
oped an alternative method (Zou, Zhang, Yang, Boothby, et al.,
2011). Based on the seated posture case, Zou, Zhang, Yang, Cloutier,
et al. (2011) extended this method to standing reach tasks. In pre-
vious work (Zou, Zhang, Yang, Boothby, et al., 2011; Zou, Zhang,
Yang, Cloutier, et al., 2011; Zou et al., 2012), the global weights
were obtained by averaging all weights for all subjects and tasks.
This paper presents new results based on the inverse optimization
method by dividing the workspace into three zones (i.e. left, mid-
dle, and right zone) and investigating the sensitivity of this meth-
od. By observation, humans employ different strategies for
standing reach tasks than for seated reach tasks in terms of motion.
In seated reach tasks, the arms move significantly and spine joints
move little. However, in standing reach tasks, the hip joints move
significantly. Therefore, by intuitive observation, the weights
should be different for standing and seated reach tasks. This paper
will examine whether this hypothesis is correct.

The rest of this paper is organized as follows: Section 2
introduces the 52 DOFs digital human model. Sections 3 and 4 give
the problem definition and nonlinear inverse optimization
formulation, respectively. Section 5 presents experimental data
collection. Section 6 shows results. Finally, the conclusion and
discussion are given in Section 7.

2. Human body model

From a kinematic standpoint, the human body can be modeled
as a series of links connected by resolute joints, as Fig. 1 shows.
This model has 52 DOFs including the pelvis, spine, left arm, right
arm, left leg, right leg, and neck. The rotation of each joint in this
model is described as a generalized coordinate qi. The set of joint
angles is defined as q ¼ ½q1 . . . q52�

T . In this model, the first three
rotational joints are defined as the global rotation angles for the
whole body. For all standing reach tasks, both feet are fixed on
the ground.

With the Denavit Hartenberg (DH) method, the position for an
end-effector is written as:

x ¼ xðqÞ ð1Þ

x(q) is obtained from the multiplication of the transformation
matrices defined by the DH method as:

0Tn ¼ 0T1
1T2 . . . n�1Tn ¼

0RnðqÞ xðqÞ
0 1

" #
ð2Þ

where iRj represents the rotation matrix from the coordinate frame
i to j. i�1Ti is the transformation matrix relating any two adjacent
coordinate systems, which is defined as:

i�1Ti ¼

cos hi � cos ai sin hi sin ai sin hi ai cos hi

sin hi cos ai cos hi � sin ai cos hi ai sin hi

0 sin ai cos ai di

0 0 0 1

2
6664

3
7775 ð3Þ

In this study, there are four natural end-effectors—the right hand,
left hand, right foot and left foot. In addition, three zones are de-
fined in Fig. 2 for different sets of weights in the cost function.
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Y
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Fig. 1. Digital human model.

Fig. 2. Three zones in standing reach tasks.
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