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a b s t r a c t

The quality level of a mechanism can be evaluated a posteriori after several months by following the
number of warranty returns. However, it is more interesting to evaluate a predicted quality level in
the design stage: this is one of the aims of statistical tolerance analysis. A possible method consists of
computing the defect probability (PD) expressed in ppm. It represents the probability that a functional
requirement will not be satisfied in mass production. For assembly reasons, many hyperstatic mecha-
nisms require gaps, which their functional requirements depend on. The defect probability assessment
of such mechanisms is not straightforward, and requires advanced numerical methods. This problem par-
ticularly interests the VALEO W.S. company, which experiences problems with an assembly containing
gaps. This paper proposes an innovative methodology to formulate and compute the defect probability
of hyperstatic mechanisms with gaps in two steps. First, a complex feasibility problem is converted into
a simpler problem. Then the defect probability is efficiently computed thanks to system reliability meth-
ods and the m-dimensional multivariate normal distribution Um. Finally, a sensitivity analysis is provided
to improve the original design. The whole approach is illustrated with an industrial case study, but can be
adapted to other similar problems.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In very competitive industrial fields such as the automotive
industry, more and more interest is being paid to the quality level
of manufactured mechanisms. It is very important to avoid war-
ranty returns and manage the rate of out-of-tolerance products
in production that can lead to assembly line stoppages and/or
the discarding of out-of-tolerance mechanisms.

The quality level of a mechanism can be evaluated by the num-
ber of faulty parts in production or by the number of warranty re-
turns per year. However, these two methods of product quality
evaluation remain a posteriori. Tolerance analysis is a more inter-
esting way to evaluate a predicted quality level in the design stage.
Scholtz (1995) proposes a detailed review of classical methods
whose goal is to predict functional characteristic variations based
on component tolerances. Moreover, statistical tolerance analysis
enables the definition of the probability that this functional
requirement will be respected, as the well known RSS (Root Sum
of Squares) does. Advanced statistical tolerance analysis methods
allow the defect probability of an existing design to be computed,

knowing the dimension tolerances and functional requirements.
Various assumptions about the statistical distributions of compo-
nent dimensions can be made based on their tolerances. This defect
probability, denoted as PD in the following, is expressed in ppm
(parts per million) and predicts the number of faulty parts per
million in mass production. Several authors have proposed well-
established methodologies to evaluate this probability for linear
(Evans, 1975a) or non-linear analytical expressions (Evans, 1975a;
Glancy & Chase, 1999; Hassani, Aifaoui, Benamara, & Samper,
2008; Nigam & Turner, 1995) of functional characteristics.

In many cases, engineers design hyperstatic mechanisms to in-
crease rigidity. For assembly reasons, this kind of mechanism re-
quires functional gaps to remove stresses and fulfill its functions.
Often, the functional requirements depend on these gaps. A statis-
tical tolerance analysis of mechanisms containing gaps is not
straightforward. In the literature, as Ballu, Plantec, and Mathieu
(2008) have noted, hyperstatic mechanisms are rarely studied be-
cause of their complexity. Moreover, gaps within mechanisms are
often neglected or poorly modeled. Valeo W.S., an automotive
company for whom quality management is a top priority, with de-
fect probability goals in ppb (parts per billion), is focused on such a
mechanism with functional gaps for which existing methodologies
are ineffective or unreliable for several reasons.

This paper proposes an innovative methodology able to com-
pute the defect probability of a hyperstatic mechanism containing
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gaps. In the literature focused on this field, either the PD formula-
tion is not adapted to this case study (Ballu et al., 2008; Wu,
Dantan, Etienne, Siadat, & Martin, 2009) or the computation
method (Monte Carlo) of the defect probability can be improved
(Dantan & Qureshi, 2009). The proposed methodology includes a
particular formulation of PD probability and a computation phase.
First, a complex feasibility problem, i.e., the research of the exis-
tence of multiple non-negative gaps, is converted into a simpler
problem consisting of multiple linear equations. Then PD is effi-
ciently computed thanks to the m-dimensional multivariate nor-
mal distribution Um originally used in a system reliability
method, the FORM (First Order Reliability Method) system. More-
over, this methodology can be applied to other similar problems.
In addition, a brief sensitivity analysis is performed in order to im-
prove the quality of the system with a very low increase in manu-
facturing cost.

In the following section, assembly issues regarding the toler-
ance analysis of hyperstatic mechanisms containing gaps are illus-
trated with the particular VALEO W.S. case. A mathematical
formulation of the defect probability PD is proposed. Taking into ac-
count the complexity of this problem, Section 3 describes three
available methods to compute PD including the FORM system
one. Two different dimension models, depicting two part manufac-
turing scenarios, are also proposed. Section 4 compares the differ-
ent methods and exposes the results of their industrial application.
Based on these results, and on a sensitivity analysis, the mecha-
nism is finally redesigned with a very low extra manufacturing
cost. Section 5 concludes the paper and presents perspectives for
the future.

2. Hyperstatic mechanisms tolerance analysis for assembly
issues

2.1. Assembly of a hyperstatic mechanism

A hyperstatic mechanism is overconstrained. When a part is
positioned in space it has six degrees of freedom. It can rotate
about the three orthogonal axes and move along each of the three
axes. In a mechanism, parts are connected to each other by links

which eliminate some of these degrees of freedom. If one or more
is eliminated more than once, the parts are overconstrained. This
creates stresses, and the mechanism is said to be hyperstatic. This
situation appears very often. Most of the time, engineers design
such systems to increase rigidity. Sometimes, hyperstatic mecha-
nisms are not desired but endured. These kinds of mechanism
often involve assembly problems. For this reason, such mecha-
nisms require functional gaps to remove stresses and fulfill their
functions.

These gaps, denoted as g (vector of gaps) in the following, in-
crease the complexity of statistical analysis. They can neither be
directly controlled, nor be considered as random variables. Never-
theless, the gap widths are random variables, although they are not
independent and depend upon the independent dimensions vari-
ables Xi gathered in the vector X. Dantan and Qureshi (2009) intro-
duce the $ ‘‘it exists’’ quantifier in order to formulate correctly
assembly problems concerning mechanisms with gaps. Thus, to
ensure mechanism assemblability, at least one feasible gap config-
uration must be found. The generic defect probability formulation
of such a mechanism is:

PD ¼ Prob Xj9g 2 ½0; gmaxðXÞ� :
m̂

i¼1

fciðX;gÞP 0

 !
where fci are functional characteristics which generally have to be
positive to ensure assemblability, m is the number of functional
requirements and gmax is the vector of gap widths, depending on
X as mentioned previously. In the interests of simplification, subse-
quent similar equations are written in the following abbreviated
form:

PD ¼ Prob 9g 2 ½0; gmaxðXÞ� :
m̂

i¼1

fciðX; gÞP 0

 !
As soon as a gap is involved in a functional characteristic, the

problem becomes complex. Two different methods can be used
to find a feasible gap configuration. It is possible to consider only
extreme gap configurations, as Ballu et al. (2008) and Wu et al.
(2009) have done, but this method can neglect certain intermedi-
ate situations which play a significant role. To be sure to not

Nomenclature

n number of parts
X vector of part dimensions
Xi ith part dimension
Ti Xi target value
ti Xi tolerance
LSLi, USLi respectively lower and upper specification limits of Xi

ri standard deviation of Xi

li mean value of Xi

di mean shift of Xi, difference between target and mean
values: di = Ti � li

dðmaxÞ
i maximum permissible mean shift of Xi

CðrÞpki; CðrÞpi Xi capability requirements

Cpki, Cpi capability measures of Xi

CðmaxÞ
pi Xi maximum capability level obtained in optimal manu-

facturing conditions
g vector of gaps
g1, g2 gaps between parts
fc1, fc2 functional characteristics of the mechanism
s functional requirement threshold (Permissible tightening)
G(Xi) performance function in physical X space

Ui ith part dimension in standard space
H(Ui) performance function in standard U space
PD defect probability of the mechanism
C95% 95% confidence interval of a random result
P�j most probable failure point associated with the jth

performance function Gj(X)
bj reliability index associated with the jth performance

function Gj(X)
U cumulative density function of the standard Gaussian

distribution
v2

n cumulative density function of the chi-squared distribu-
tion with n degrees of freedom

Um cumulative density function of the m-dimensional
Gaussian distribution

m number of performance functions
[q] covariance matrix

a(j) direction cosines associated with the jth performance
function Gj(X)

Si Xi sensitivity index
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