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a b s t r a c t

In many production processes, a key material is prepared and then transformed into different final prod-
ucts. The lot sizing decisions concern not only the production of final products, but also that of material
preparation in order to take account of their sequence-dependent setup costs and times. The amount of
research in recent years indicates the relevance of this problem in various industrial settings. In this
paper, facility location reformulation and strengthening constraints are newly applied to a previous
lot-sizing model in order to improve solution quality and computing time. Three alternative metaheuris-
tics are used to fix the setup variables, resulting in much improved performance over previous research,
especially regarding the use of the metaheuristics for larger instances.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The lot sizing problem is frequently encountered in industrial
production planning. How does a planner decide the lot size of
each product produced on one or more machines in each demand
period over a planning horizon? This problem has been extensively
researched, as discussed in the reviews by Bahl, Ritzman, and Gup-
ta (1987), Drexl and Kimms (1997), Brahimi, Dauzere-Peres, Najid,
and Nordli (2006), Karimi, Fatemi Ghomia, and Wilson (2003) and
Jans and Degraeve (2007), Jans and Degraeve (2008).

In some industrial sectors, production setup costs and times are
sequence-dependent, so that the decisions about the production of
lots concern their sequence as well as their size. The two sets of
decisions are mutually dependent and so should be modelled and
decided simultaneously rather than separately. For example, Ara-
ujo, Arenales, and Clark (2007) consider the processing of key
materials at an initial stage as well as the products that use the
materials. In such a two-stage system, the sequencing decisions
at the end stage must jointly consider products that use the same
materials, so that material changeovers are minimised at the prior
stage. In other words, the sequencing at both stages must be inte-
grated. The model in Araujo et al. (2007) is based on a classical for-
mulation of the lot sizing problem, but its complexity meant that
an established industrial-grade optimisation solver was unable to
find an optimal solution within acceptable computing time. As a

result, the paper developed heuristic solution methods based on
relax-and-fix within a rolling horizon approach and incorporating
metaheuristics.

Since then, many other authors have also researched the inte-
grated lot-sizing and sequencing problem with material prepara-
tion at a prior stage in a wide range of industrial settings.
Examples include soft drink production (Ferreira, Clark, Alamada-
Lobo, & Morabito, 2012; Ferreira, Morabito, & Rangel, 2009,
2010; Toledo, França, Morabito, & Kimms, 2009), animal feed
(Clark, Morabito, & Toso, 2010; Toso, Clark, & Morabito, 2009),
electrofused grains (Luche, Morabito, & Pureza, 2009), glass bottles
(Almada Lobo, Klabjan, Carravilla, & Oliveira, 2007; Almada Lobo,
Oliveira, & Carravilla, 2008), foundries (Araujo, Arenales, & Clark,
2008; Camargo, Toledo, & Mattiollo, 2012; Tonaki & Toledo,
2010), yogurt packaging company (Marinelli, Nenni, & Sforza,
2007), pharmaceutical company (Stadtler, 2011) and sand casting
operations (Hans & Van de Velde, 2011).

Most of this recent research, including Araujo et al. (2007), is
based on the General Lot Sizing and Scheduling Problem (GLSP) mod-
el (Fleischmann & Meyr, 1997) in which the planning horizon is
subdivided into macro-periods, in each of which multiple products
can be produced. To model the sequence of lots, each macro-period
is in turn subdivided into micro-periods in which at most one
product can be produced. This special structure involving subperi-
ods within macro time periods is similar to a small-bucket frame-
work (Koçlar, 2005).

However, some papers, such as Clark et al. (2010) and Ferreira
et al. (2012) take a different approach, using an asymmetric travel-
ling salesman problem (ATSP) representation for sequencing lots
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rather than a GLSP-type model. The results presented in Ferreira
et al. (2012) shown the superiority of their ATSP-type model over
a GLSP-type model. One possible reason is the poor quality of the
GLSP linear relaxation as a lower bound on the optimal solution.

Taking forward research initiated in Bernardes, Araujo, and Ran-
gel (2010), the first contribution of this current paper is to demon-
strate that certain reformulations applied to the GLSP-type model
in Araujo et al. (2007) can provide improved solutions using estab-
lished optimisation solvers, due mainly to their better quality of
linear-relaxation lower-bounds, contributing to the growing re-
search in this area. The second contribution is to show computa-
tionally that the use of metaheuristic methods can help solve the
reformulations more quickly and better than established solvers,
such as, Cplex 12.0.

This paper is structured as follows. In Section 2, the original
model in Araujo et al. (2007) is presented. Section 3 develops ex-
tended formulations and proposes new constraints. In Section 4,
a reformulated rolling horizon-based model is proposed while Sec-
tion 5 presents the metaheuristics. Section 6 computationally com-
pares the quality of the reformulations using the Branch-and-Cut
search within the solver Cplex 12.0 and using the metaheuristics.
Section 7 concludes and poses challenges for future research.

2. Original Formulation (OF)

In Araujo et al. (2007), a material may be used in multiple prod-
ucts, but a product is made from just one material. A product must be
manufactured in the same time period in which its material is pro-
cessed. Thus processed materials cannot be held over from one per-
iod to the next. In each time period only one material can be
processed on a given machine. A setup changeover from one mate-
rial to another is sequence-dependent, i.e., it consumes capacity
time in a manner that is dependent on the sequence in which the
materials are processed. The triangle inequality holds for setup costs
and times so that it is optimal to produce at most one lot per product
per period. The model allows backlogs as well as inventory.

The sequencing decisions are made by dividing a period into
smaller subperiods, as in the General Lot Sizing and Scheduling Prob-
lem (GLSP) model (Drexl & Kimms, 1997; Fleischmann & Meyr, 1997;
Meyr, 2000, 2002). Let K be the total number of materials, P the total
number of products, T the total number of periods and g the total
number of subperiods. Consider the following indices and data:

The Original Formulation (OF) (Araujo et al., 2007) of the math-
ematical model is:
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Indices
j, k = 1, . . . ,K processed materials
p = 1, . . . ,P products
t = 1, . . . ,T periods
n = 1, . . . ,g subperiods

Data
C Capacity available on the machine

in each subperiod
qp Capacity required to produce one

unit of product p
dpt Demand for product p at the end

of period t
S(k) Set of products p that use material

k. Each product uses just one
material, i.e., {1, . . . ,P} = S(1)
[, . . . ,[S(K), and S(k) \ S(j) = Ø, for
all materials k – j, implyingP

k|S(k)| = P
h�pt Backlog penalty for delaying

delivery of a unit of product p at
the end of period t

hþpt
Inventory penalty for holding a
unit of product p at the end of
period t

sjk Setup penalty (or cost) for
changing over from material j to
material k, where sjj = 0

stjk Setup time (loss of machine
capacity) for changing over from
material j to material k, where
stjj = 0

Variables
xpn Quantity (lot-size) of product p to

be produced in subperiod n
Iþpt Inventory of product p at the end

of period t, where Iþp0 is the initial
inventory at the start of period 1.

I�pt Backlog of product p at the end of
period t, where I�p0 is the initial
backlog at the start of period 1.

yk
n Binary variable: yk

n ¼ 1 if the
machine is configured for
production of material k in
subperiod n, otherwise yk

n ¼ 0.
Note that the initial setup state yk

0
is set to zero and so not a variable

zjk
n Binary setup variable: zjk

n ¼ 1 if
there is a machine changeover
from material j to material k at
the start of subperiod n,

otherwise zjk
n ¼ 0. Thus zjk

n ¼ 1 if

yj
n�1 ¼ 1&amp; yk

n ¼ 1, and zjk
n ¼ 0

if yj
n�1 ¼ 0 or yk

n ¼ 0. It is relaxed
to be continuous for reasons
explained below

Consider also the
following definitions
from the GLSP model

gt Maximum number of subperiods
in period t

Ft ¼ 1þ
Pt�1

s¼1gt
First subperiod in period t

Lt = Ft + gt � 1 Last subperiod in period t

g ¼
PT

t¼1gt
Total number of subperiods over
periods 1, . . . ,T
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