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a b s t r a c t

We consider single-machine batch delivery scheduling with an assignable common due date and control-
lable processing times, which vary as a convex function of the amounts of a continuously divisible com-
mon resource allocated to individual jobs. Finished jobs are delivered in batches and there is no capacity
limit on each delivery batch. We first provide an O(n5) dynamic programming algorithm to find the opti-
mal job sequence, the partition of the job sequence into batches, the assigned common due date, and the
resource allocation that minimize a cost function based on earliness, tardiness, job holding, due date
assignment, batch delivery, and resource consumption. We show that a special case of the problem
can be solved by a lower-order polynomial algorithm. We then study the problem of finding the optimal
solution to minimize the total cost of earliness, tardiness, job holding, and due date assignment, subject
to limited resource availability, and develop an O(nlogn) algorithm to solve it.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The importance of just-in-time scheduling has led to a wide
range of investigations of scheduling problems that include both
earliness and tardiness penalties. In the just-in-time scheduling
environment, if too many orders are completed before a specified
delivery date (or due date), they must be held in storage, thus
incurring holding and/or tying up capital for the company. If the
company promises its customers too soon a delivery date, many
orders may not be able to be completed before the delivery date
due to capacity and resource constraints. This also entails extra
costs including late charges and tardiness penalties. In order to re-
duce earliness–tardiness penalties, including the possibility of los-
ing customers, companies are under increasing pressure to quote
attainable delivery dates. At the same time, promising delivery
dates too far into the future may turn customers away or may com-
pel companies to offer price discounts in order to retain customers.
Thus there is an important tradeoff between assigning relatively
short due dates to customer orders and reducing tardiness penalty.
Consequently, many recent studies consider due date assignment
as part of the scheduling process in view of the fact that the ability
to control due dates is a major factor for improving system perfor-
mance. The most common due date assignment methods used in
manufacturing include (i) the common (or constant) due date

assignment method (usually referred to as CON), where all the jobs
are assigned the same due date; (ii) the slack due date assignment
method (usually referred to as SLK), where the jobs are given an
equal flow allowance that reflects equal waiting time (i.e., equal
slacks); and (iii) the unrestricted (or different) due date assignment
method (usually referred to as DIF), where each job can be assigned
a different due date with no restrictions. For reviews of research re-
sults on scheduling models considering due date assignment and
their practical applications, the reader may refer to Cheng and
Gupta (1989), Gordon, Proth, and Chu (2002), Gordon, Strusevich,
and Dolgui (2010), and Lauff and Werner (2004).

Recently, increasing attention has been paid to due date sched-
uling problems in which the jobs have controllable (compressible)
processing times. The notion of controllable processing times
arises from project planning and control. The assumption of con-
trollable processing times is justified in situations where jobs can
be accomplished in shorter or longer durations by increasing or
decreasing the allocation of resources to process individual jobs.
Studies of scheduling problems with controllable processing times
were initiated by Vickson (1980a, 1980b). Surveys of this area of
scheduling research can be found in Nowicki and Zdrzalka (1990)
and Shabtay and Steiner (2007a). In most studies of scheduling
with controllable processing times, researchers assume that the
job processing time is a bounded linear function of the amount
of resources allocated to process the job (e.g., Daniels, 1990; Janiak,
1987; Janiak & Kovalyov, 1996; Kayvanfar, Mahdavi, & Komaki,
2012; Ng, Cheng, & Kovalyov, 2004; Panwalkar & Rajagopalan,
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1992; Van Wassenhove & Baker, 1982), i.e., the resource consump-
tion function is of the form pjðujÞ ¼ �pj � ajuj; j ¼ 1;2; . . . ;n, where
0 6 uj 6 �uj < �pj=aj. For many resource allocation problems in
physical or economic systems, however, the linear resource con-
sumption function fails to reflect the law of diminishing marginal
returns. This law states that productivity increases at a decreasing
rate with the amount of resources employed. In order to model
this, other studies of scheduling with resource allocation assume
that the job processing time is a convex decreasing function of
the amount of resources allocated to process the job. For a convex
resource consumption function, the relationship between the job
processing time and the resource allocated to the job is given by

pjðujÞ ¼
wj

uj

� �k

: ð1Þ

This resource consumption function has been extensively used in
continuous resource allocation theory (e.g., Armstrong, Gu, & Lei,
1997; Monma, Schrijver, Todd, & Wei, 1990; Scott & Jefferson,
1995; Shabtay, 2004).

Panwalkar and Rajagopalan (1992) are the first researchers to
consider the single-machine earliness–tardiness scheduling
problem with due date assignment and a linear resource
consumption function under the condition that the compression
rates of the jobs are aj = 1. They reduce the problem 1jlin; aj ¼
1;CONj

Pn
j¼1ðaEj þ bTj þ v jujÞ to a linear assignment problem,

implying that the problem is solvable in O(n3) time. The same
approach to reducing a scheduling problem to a linear
assignment problem and solving it in O(n3) time is adopted by
Cheng, Oguz, and Qi (1996) and Biskup and Cheng (1999) in their
extensions of the results by Panwalkar and Rajagopalan (1992).
Cheng et al. (1996) deal with the problems 1jlin; aj ¼
1;CONj

Pn
j¼1ðaEj þ bTj þ cdþ v jujÞ and 1jlin; aj ¼ 1; SLKj

Pn
j¼1

ðaEj þ bTj þ cdj þ v jujÞ. Biskup and Cheng (1999) consider the
problem 1jlin; aj ¼ 1;CONj

Pn
j¼1ðaEj þ bTj þ hCj þ v jujÞ with h P 0.

Alidaee and Ahmadian (1993) extend the results by Panwalkar
and Rajagopalan (1992) to the case with identical parallel
machines and solve the problem by reducing it to a transporta-
tion problem. For the common due date, Biskup and Jahnke
(2001) present O(nlogn) algorithms to minimize functions
f ðuÞ þ

Pn
j¼1ðaEj þ bTj þ cdjÞ and f ðuÞ þ

Pn
j¼1ðwUj þ cdjÞ under the

condition of jointly reducible processing times, i.e., when aj ¼ �pj

and uj = u for j = 1,2, . . . ,n, where f(u) is a function of the
resource consumption cost, which is the same for all the jobs,
w is the unit penalty cost for finishing a job late, and Uj = 1 if
job Jj is tardy and Uj = 0 otherwise. For both linear and convex

resource consumption functions, Shabtay and Steiner (2007b)
propose O(n) algorithms for the problems 1jlin=conv ;
CONj

Pn
j¼1ðwjUj þ cdþ v jujÞ þ dCmax and 1jlin=conv ; SLKj

Pn
j¼1

ðwjUj þ cdj þ v jujÞ þ dCmax, and an O(n4) algorithm for the prob-
lem 1jlin=conv ;DIFj

Pn
j¼1ðwjUj þ cdj þ v jujÞ þ dCmax. For the prob-

lem of minimizing
Pn

j¼1ðaEj þ bTj þ cdj þ v jujÞ þ dCmax, Shabtay
and Steiner (2008) provide unified algorithms (applicable to the
different (DIF), constant (CON), and slack (SLK) rules of due date
assignment) that require O(n3) time and O(nlogn) time for a lin-
ear and for a convex resource consumption function, respectively.

To the best of our knowledge, all the above papers considering
due date scheduling and controllable processing times treat the
delivery cost as either negligible or irrelevant. In other words, they
focus on the machine scheduling problem, while ignoring the prob-
lem of scheduling job delivery. However, delivery cost is a signifi-
cant element of the production cost, which depends not only on
when jobs are processed but also when finished jobs are delivered.
Incidentally, Hermann and Lee (1993) remark that a more realistic
production model should include scheduling of both job processing
and job delivery. Hermann and Lee (1993) consider a batch delivery
problem where all the jobs have a given restrictive common due
date with the objective of minimizing the sum of earliness penalty,
tardiness penalty, and delivery cost. They provide a pseudo-polyno-
mial dynamic programming algorithm to solve the problem. Chen
(1996) also studies this problem in which the common due date is
a decision variable. Hence he adds a due date penalty to the objec-
tive function and shows that the problem can be solved in O(n5)
time. Yin, Cheng, Xu, and Wu (2012) extend the problem studied
by Chen (1996) to the case where an additional rate-modifying
activity is allowed. The objective is to find a common due date for
all the jobs, a location of the rate-modifying activity, and a delivery
date for each job to minimize the sum of earliness, tardiness, hold-
ing, due date, and delivery cost. They provide some properties of the
optimal schedule for the problem and present polynomial algo-
rithms for some special cases. Hamidinia, Khakabimamaghani,
Mazdeh, and Jafari (2012) consider a single-machine scheduling
problem that involves earliness, tardiness, inventory cost, and batch
delivery cost, which is shown to be NP-hard. They develop an inte-
ger programming approach and a genetic algorithm to solve it.

With a view to modelling a realistic production system, we con-
sider in this paper the just-in-time scheduling that involves batch
delivery cost, an assignable common due date, and controllable
processing times simultaneously on a single machine, which ex-
tends the problem considered in Chen (1996) with controllable
processing times. An example of a practical situation involving
these three types of decision is as follows: consider a segment of

Nomenclature

n number of jobs to be processed at time zero (n P 2)
Jj job number j
[j] a subscript denoting the job assigned in position j of

a given sequence
pj processing time of job Jj
�pj noncompressed processing time of job Jj

uj amount of resource allocated to job Jj
�uj upper bound on the amount of resource that can be

allocated to job Jj

aj positive compression rate of job Jj

wj workload of the processing operation of job Jj

k a positive constant
d common due date for all the jobs, which is a decision

variable
Cj completion time of job Jj

Dj delivery time of job Jj

Ej = max{0, d � Dj} earliness of job Jj

Tj = max{0, Dj � d} the tardiness of job Jj

Hj = Dj � Cj holding time of job Jj

a cost of one unit of earliness
b cost of one unit of tardiness
h cost of one unit of holding time
c cost of one unit of due date time
w unit batch delivery cost
k a Lagrangian multiplier (shadow price)
vj cost of allocating one unit of the resource to process

job Jj

Bk set of jobs contained in the kth batch
jBkj number of jobs in Bk

lk number of jobs in the first k batches with l0 = 0,
where j = 1,2, . . . ,n and k = 0,1,2, . . .
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