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a b s t r a c t

This paper presents a gradient neural network model for solving convex nonlinear programming (CNP)
problems. The main idea is to convert the CNP problem into an equivalent unconstrained minimization
problem with objective energy function. A gradient model is then defined directly using the derivatives of
the energy function. It is also shown that the proposed neural network is stable in the sense of Lyapunov
and can converge to an exact optimal solution of the original problem. It is also found that a larger scaling
factor leads to a better convergence rate of the trajectory. The validity and transient behavior of the neu-
ral network are demonstrated by using various examples.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Constrained nonlinear optimization has many applications in
scientific and engineering areas, such as signal and image process-
ing, manufacturing, optimal control, and pattern recognition
(Agrawal & Fabien, 1999; Avriel, 1976; Bazaraa, Sherali, & Shetty,
2006; Bertsekas, 1989; Boyd & Vandenberghe, 2004; Fletcher,
1981). Over the past years, a variety of numerical algorithms have
been developed for solving constrained optimization problems,
such as the simplex methods for linear programming (Rao, 2009),
active set methods (Nocedal & Wright, 2006), and interior point
methods (Bazaraa et al., 2006). However, traditional algorithms
for digital computers may not be efficient and cannot satisfy
real-time requirement such as in signal processing, robotics, func-
tion approximation and automatic control. One promising and
powerful method to solve the optimization problems in real time
is to employ artificial neural networks based on circuit implemen-
tation. The essence of neural network approach for mathematical
programming problems is to establish an energy function (nonneg-
ative) and a dynamic system which is a representation of an artifi-
cial neural network. The dynamic system is normally in the form of
first order ordinary differential equations. It is expected that for an
initial point, the dynamic system will approach its static state (or

equilibrium point) which corresponds the solution of the underly-
ing optimization problem. An important requirement is that the
energy function decreases monotonically as the dynamic system
approaches an equilibrium point. Because of the dynamic nature
of optimization and the potential of electronic implementation,
neural networks can be implemented physically by designated
hardware such as application-specific integrated circuits, where
the optimization procedure is truly done in parallel. Therefore,
the neural network approach can solve optimization problems in
running times that are orders of magnitude much faster than con-
ventional optimization algorithms executed on general-purpose
digital computers. It is of great interest to develop some neural
network models that could provide a real-time online solution.

The neural network for solving mathematical programming
problems was first proposed by Tank and Hopfield (1986). Ken-
nedy and Chua (1988) proposed an improved model which em-
ploys both gradient method and penalty function method for
solving nonlinear programming problems. To avoid penalty param-
eters, Rodriguez-Vazquez, Dominguez-Castro, Rueda, Huertas, and
Sanchez-Sinencio (1990) proposed switched-capacitor neural net-
work for solving a class of optimization problems. Based on dual
and projection methods Gafini and Bertsekas (1984), Marcotte
(1991), Kinderlehrer and Stampcchia (1980), Ding and Huang
(2008), Gao and Liao (2010), Hu and Wang (2007), Jiang, Zhao,
and Shen (2009), Maa and Shanblatt (1992), Nazemi (2011),
Nazemi and Omidi (2012), Nazemi and Omidi (2013), Xia and
Wang (2000), Xia and Wang (2004a), Xue and Bian (2007), Xue
and Bian (2009) and Wu, Shi, Qin, Tao, and He (2010), presented
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several neural networks for solving variational inequality, convex
quadratic programming, degenerate convex quadratic, degenerate
quadratic minimax and interval quadratic programming problems.
The projection neural networks were also developed for solving
CNP problems by Effati, Ghomashi, and Nazemi (2007), Gao
(2004), Leung, Chen, and Gao (2003), Liang and Wang (2000), Mal-
ek, Hosseinipour-Mahani, and Ezazipour (2010), and Xia and Wang
(2004b). Recently, neural networks based on the merit functions
have been designed for linear and quadratic programming, and
for nonlinear complementarity problems (see Effati & Nazemi,
2006; Chen, Ko, & Pan, 2010). It is shown that these neural net-
works are Lyapunov stable, asymptotically stable, and exponen-
tially stable. It is noticeable that some of the proposed neural
network models have better performances than the others in the-
ory or implementation consisting of complexity, stability and
convergence.

Motivated by the above discussions, in this paper, we proposed
a novel neural network for solving CNP problems based on the Kar-
ush–Kuhn–Tucker (KKT) optimality conditions and the Fischer–
Burmeister (FB) merit function. This neural network is reliable
and simple in structure. The proposed neural network is also
proved to be globally stable in the sense of Lyapunov and can ob-
tain an exact optimal solution of the original optimization
problem.

This paper is organized as follows. In Section 2, an NCP-function
is used to reformulate the CNP problem as an unconstrained min-
imization problem. In Section 3, a gradient neural network is con-
structed to solve the CNP problem and the stability properties of
the proposed neural network are investigated. Some simulation re-
sults are discussed to evaluate the effectiveness of the proposed
neural network in Section 4. Finally, Section 5 concludes this paper.

2. Problem statement

Consider the following CNP problem:

minimize f ðxÞ; ð1Þ
subject to gðxÞ 6 0; ð2Þ

hðxÞ ¼ 0; ð3Þ

where x 2 Rn; f : Rn ! R; gðxÞ ¼ ðg1ðxÞ; g2ðxÞ; . . . ; gmðxÞÞ
T is an

m-dimensional vector-valued continuous function of n variables,
the functions f, g1, . . . , gm are assumed to be convex and twice
differentiable, hðxÞ ¼ Ax� b; A 2 Rl�n and b 2 Rl.

Assumption 2.1. Throughout this paper, we assume the following
notations as:

(a) The problem (1)–(3) has a unique optimal solution and sat-
isfies the Slater condition (see Avriel, 1976, p. 97), i.e., there
exists a x0 2 Rn such that

gðx0Þ < 0; Ax0 � b ¼ 0:

(b) The gradient {rgk(x)jk = 1, . . . ,m} [ {r hp(x)jp = 1, . . . , l} are
linear independent.

(c) r2f ðxÞ þ
Pm

k¼1ukr2gkðxÞ
� �

is positive definite matrix on the
null space of the gradients {rhp(x)jp = 1, . . . , l}.

It is well known (see (Bazaraa et al., 2006);) that a triple
ðx�T ;u�T ;v�TÞT 2 Rnþmþl is an optimal solution of (1)–(3) if and only
if ðx�T ;u�T ;v�TÞT satisfies the following KKT system

u� P 0; gðx�Þ 6 0; u�T gðx�Þ ¼ 0;

rf ðx�Þ þ rhðx�ÞTv� þ rgðx�ÞT u� ¼ 0;
hðx�Þ ¼ 0:

8><
>: ð4Þ

x⁄ is called a KKT point of (1)–(3) and a pair ðu�T ;v�TÞT is called the
Lagrangian multiplier vector corresponding to x⁄. Moreover, if f and
gk, k = 1, . . . ,m are all convex, then x⁄ is an optimal solution of (1)–
(3), if and only if x⁄ is a KKT point of (1)–(3).

For the convenience of later discussions, it is necessary to
introduce a few notations, definitions and two lemmas. In what
follows, k�k denotes l2-norm of Rn; T denotes the transpose and
x = (x1,x2, . . . ,xn)T. If a differentiable function F : Rn ! R, then
rF 2 Rn stands for its gradient. For any differentiable mapping
F ¼ ðF 1; . . . ;FmÞT : Rn ! Rm; rF ¼ ½rF 1ðxÞ; . . . ;rFmðxÞ� 2 Rn�m,
denotes the transposed Jacobian of F at x.

Definition 2.2. Let X # Rn be an open neighborhood of �x. A
continuously differentiable function f : Rn ! R is said to be a
Lyapunov function at the state �x (over the set X) for a system
x0 ¼ FðxÞ, if

fð�xÞ ¼ 0; fðxÞ > 0; 8x 2 X n f�xg;
dfðxðtÞÞ

dt ¼ ½rfðxðtÞ�TFðxðtÞÞ 6 0; 8x 2 X:

(

Lemma 2.3 Miller and Michel (1982).

(a) An isolated equilibrium point x⁄ of a system x0 ¼ FðxÞ is Lyapu-
nov stable if there exists a Lyapunov function over some neigh-
borhood X⁄ of x⁄.

(b) An isolated equilibrium point x⁄ of a system x0 ¼ FðxÞ is asymp-
totically stable if there is a Lyapunov function over some neigh-
borhood X⁄ of x⁄ such that dfðxðtÞÞ

dt < 0; 8x 2 X� n fx�g.

Definition 2.4. Let x(t) be a solution trajectory of a system
x0 ¼ FðxÞ, and let X⁄ denotes the set of equilibrium points of this
equation. The solution trajectory of the system is said to be glob-
ally convergent to the set X⁄, if x(t) satisfies

lim
t!1

distðxðtÞ;X�Þ ¼ 0;

where distðxðtÞ;X�Þ ¼ infy2X� kx� yk. In particular, if the set X⁄ has
only one point x⁄, then limt?1x(t) = x⁄, and the system is said to
be globally asymptotically stable at x⁄ if the system is also stable
at x⁄ in the sense of Lyapunov.

Lemma 2.5. If A is an n � n non singular matrix, then the homoge-
neous system AX = 0 has only the trivial solution X = 0.

3. Reformulation and a gradient model

We can establish the relationship between the solution to prob-
lem (1)–(3) and the solution to an equivalent unconstrained mini-
mization problem via a merit function (see Hu, Huang, & Chen,
2009; Chen et al., 2010). A merit function is a function whose glo-
bal minimizers coincide with the solutions of the NCP. The class of
NCP-functions defined below is used to construct a merit function.

Definition 3.1. A function / : R2 ! R, is called an NCP-function if
it satisfies

/ða; bÞ ¼ 0() a P 0; b P 0; ab ¼ 0:

A popular NCP-function is the FB function, which is strongly semi-
smooth (Pan & Chen, 2010; Sun & Sun, 2005) and is defined as

/FBða; bÞ ¼ ðaþ bÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
:

The FB merit function wFB : R� R! Rþ can be obtained by taking
the square of /FB, i.e.,
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