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a b s t r a c t

This research deals with line balancing under uncertainty and presents two robust optimi zation models.
Interval uncertainty for operation times was assumed. The methods proposed generate line designs that 
are protected against this type of disruptions. A decomposition based algorithm was developed and com- 
bined with enhanceme nt strategies to solve optimally large scale instances. The efficiency of this algo- 
rithm was tested and the experimen tal results were presented. The theoretical contribution of this 
paper lies in the novel models proposed and the decompo sition based exact algorithm developed. More- 
over, it is of practical interest since the production rate of the assembly lines designed with our algorithm 
will be more reliable as uncertainty is incorpor ated. Furthermore, this is a pioneering work on robust 
assembly line balancing and should serve as the basi s for a decision support system on this subject.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction 

Assembly lines are production systems that contain serially lo- 
cated workstations in which operations are continuously per- 
formed. Parts move down the line until they are finished. They 
are commonly used in many industries as they produce large 
amounts of standardized products efficiently. In this respect, mod- 
eling and solving line balancing problems are increasingly gaining 
importance in light of industry’s quest for efficiency.

Line balancing deals with assigning operations to workstat ions 
to optimize some predefined objective function(s). Precedence 
relations, which define the order of operations, are taken into ac- 
count and capacity or cost-based objective functions are 
optimized.

Assembly lines can be classified into three categories with re- 
spect to (wrt.) the number of product models produced (Scholl,
1999): simple (SALBP), mixed (MALBP) and multi-mode ls
(MMALBP). Several versions of the same product are processed in
mixed model lines and similar production processes are required 
for them. The lines where production processes differ significantly 
require set-ups and are called multi-mode l lines.

For SALBP on the whole, one type of homogen eous product is
manufactur ed and there are two fundamental capacity oriented 
problems: minimizing the number of workstat ions given a re- 
quired cycle time, which is defined by the maximum of the station 

times (SALBP 1), or minimizing the cycle time given the number of
workstat ions (SALBP 2). The efficiency problem (SALBP E) which 
combines these two formulation s and optimize the multiplication 
of the number of workstat ions and cycle time is also often studied 
(Wei and Chao, 2011 ).

In real life, assembly processes are subject to various sources of
uncertainty, such as variability in operation times, resource uses or
availabili ties. These variations threaten assembly targets and to
hedge against them is essential. Among these sources, variation s
in operation times could be significant, especiall y for lines that 
contain manual operations. In case of high variations, production 
managemen t is costly (line stoppages, reassignment of workers,
overtime , shortages, etc.). In this regard, this research focuses on
preventio n of these costs. For this purpose, we formulat e the ro- 
bust SALBP-2. In this problem, number of stations is assumed to
be predetermin ed, hence variability affects the cycle time and 
hence production rates. An algorithm is developed to assign oper- 
ations to workstation s so that operations are most likely to be
complete d within the minimal cycle time defined. As a result, more 
reliable assembly systems, which have the ability to perform well 
even when confronte d with unexpected events, will be designed.

We emphasize that this research contributes both to the theory 
and practice in assembly line design. Regarding theory, this is one 
of the first publications that apply robust optimization to model 
and hedge against disruptions in assembly lines. Moreover, Bend- 
ers Decomposition is not commonly employed to solve balancing 
problems . In fact, a great majority of the studies use dynamic pro- 
gramming, branch and bound or heuristic methods.
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On the other hand, in practice, various enterprises in the auto- 
motive, mechanical and electronics industries might benefit from 
our models and algorithm in establishi ng reliable assembly lines.
Moreover, our algorithm has the advantage of not requiring 
exhaustive historical data or probability distribution s; reliable pre- 
vious data might not exist to estimate probabili ty distribution s for 
operation times in many industries, especiall y for new lines.

The rest of the paper is organized as follows. The literature on
related line balancing problems and methods that model and 
hedge against uncertainty are summari zed in Section 2. Mathemat- 
ical models are given for the deterministic and robust problems in
Sections 3.1 and 3.2, respectively. To solve these problems, a
decompositi on algorithm is developed in Section 4. In Section 5,
experimental analysis and computational results are presented. Fi- 
nally, conclusions and future research perspecti ves are given in
Section 6.

2. Related literature 

To solve SALBP-2 to optimality, Klein and Scholl (1996) pre-
sented a branch and bound algorithm, while Uğurdag ˘ et al.
(1997) developed approximation algorithms . Goksen and Agpak 
(2006) followed a multi-criteria decision making approach and 
developed a goal programm ing model for U-type lines. However,
Simaria and Vilarinho (2004) addressed mixed models, specifically
MALBP-2, and produced approximat e solutions with genetic algo- 
rithms. Ozcan and Toklu (2009) presente d a mathematical model 
and a simulated annealing algorithm to balance two-sided lines.
Dolgui et al. (2012) investiga ted a different extension of line bal- 
ancing and incorporate d equipment selection with minimum cost 
objective.

A classification and representation scheme for all these prob- 
lems were presented by Boysen et al. (2007). We also refer the 
readers to the surveys of Scholl and Becker (2006), Boysen et al.
(2008), Battaia and Dolgui (2013) for other relevant problems 
and models.

Note that the majority of these line balancing studies assume 
the complete knowledge of all data. But, today, integrating protec- 
tion mechanis ms against uncertainty sources is crucial to reach 
production goals. For this purpose, we can use robust optimization,
which is one of the fundamental optimization approach es that 
model uncertainty and its effects as do stochasti c programm ing,
sensitivity analysis, parametric programmin g and fuzzy 
programmin g.

Among these approaches, stochastic programming is widely ap- 
plied as it is a powerful modeling system to describe uncertain 
data using probability distribut ions. It has also been applied to line 
balancing (Cakir et al., 2011; Chiang and Urban, 2006; Erel et al.,
2005; Guerriero and Miltenbur g, 2003 ). However , we reemphasize 
that stochastic approach is only appropriate if an accurate probabi- 
listic description is available.

Another alternative approach that has recently attracted the 
attention of many researchers is fuzzy programm ing. It uses fuzzy 
numbers and the constrain ts are defined by fuzzy sets with mem- 
bership functions instead of random variables. Membership func- 
tions might allow some constrain t violations and measure the 
degree of constraints satisfaction . It has been also applied to line 
balancing (Gen et al., 1996; Kara et al., 2009 ).

Sensitivity or stability analysis differs since it is reactive in nat- 
ure and does not address uncertainty in the modeling phase. Sots-
kov et al. (2006) and Gurevsky et al. (2013) investigated the 
sensitivity of the solutions for line balancing problems and derived 
the necessary and sufficient condition s for a predefined solution to
remain optimal with respect to small variations in processing 
times. They performed a post-optima lity analysis, whereas we

model the variability in processin g times and generate the optimal 
solution(s) of the robust problem.

Robust optimization considers the worst-case performanc es
and seeks for solutions that perform well under the worst-case sce- 
narios (Ben-Tal and Nemirovski, 2000 ). The most common robust 
optimizati on models are minmax and minmax regret models.
The minmax models minimize the maximum cost across all sce- 
narios. Kouvelis and Yu (1997) discussed them comprehens ively 
and applied them to a wide range of combinatori al optimization 
problems . Minmax regret models seek to minimize the maximum 
regret, which is the difference between the cost of the solution and 
optimal one, across all scenarios. They have been used to model ro- 
bust versions of some combinatori al optimization problems such 
as the minimum spanning tree problem and some line balancing 
problems (Dolgui and Kovalev, 2012; Montema nni and Gambard -
ella, 2005 ). Both minmax and minmax regret approaches are pes- 
simistic, so they may perform poorly under many scenarios.

To avoid over pessimism, Bertsimas and Sim (2003) recom-
mended a restricted uncertainty approach in which only a subset 
of coefficients (only C of them) get their upper bound values. Using 
this restricted uncertainty approach, Hazir et al. (2011) formulat ed
optimizati on models for multi-mode project scheduling. Its appli- 
cations in line balancing are quite recent: Al-e hashem et al.
(2009) presented a formulat ion for mixed-model lines (MMALBP).
Gurevsky et al. (2012) formulated the robust SALBP-1 and pre- 
sented a branch and bound solution algorithm. Recently , Nazarian
and Ko (2013) also investigated the relationship between the con- 
servatism level of decision makers and manufactur ing line design;
different ly, they concentrated on analysis of non-produc tive times 
in stations.

3. Problems and models 

3.1. Determini stic SALBP-2 

Consider an assembly system with K stations and n operations.
The goal is to minimize the cycle time (Eq. (1)), which is defined by
the maximum of the station times (station total execution times,
Eq. (3)). A single station is assigned to each operation (Eq. (2)),
and precedence constrain ts should not be violated (Eq. (4)).

Min C ð1Þ
subject to

X
k2SIj

xjk ¼ 1; for j ¼ 1; . . . ;n ð2Þ

X
j2Mk

tjxjk 6 C for k ¼ 1; . . . ;K ð3Þ
X
k2SIi

kxik 6
X
k2SIj

kxjk 8ði; jÞ 2 A; LSi P ESj ð4Þ

xjk 2 f0;1g for j ¼ 1; . . . ;n; k 2 SIj ð5Þ

In the above formulat ion, binary decision variables xjk assign
operation j to station k (Eq. (5)). A graph, G = (N, A), where N is
the set of nodes and A # N � N is the set of arcs, models the pre- 
cedence relations among operations. In addition, the following 
paramete rs are required to eliminate redundant precedence con- 
straints: earliest and latest stations in which operation j could be
performed (ESj and LSj), station interval (SIj = [ESj, LSj]) and set of
operation s assignab le to station k (Mk = {j: k 2 SIj}).
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Note that a derivation of these parameters requires defining the 
set of predecessor s and successors (P�j and F�j ) and an upper bound 
for the cycle time C (see Scholl, 1999 for details).

262 Ö. Hazır, A. Dolgui / Computers & Industrial Engineering 65 (2013) 261–267



Download	English	Version:

https://daneshyari.com/en/article/1134499

Download	Persian	Version:

https://daneshyari.com/article/1134499

Daneshyari.com

https://daneshyari.com/en/article/1134499
https://daneshyari.com/article/1134499
https://daneshyari.com/

