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a b s t r a c t

This paper proposes a PSO-based optimization approach with a particular path relinking technique for 
moving particles. PSO is evaluated for two combinato rial problems. One under uncertainty, which repre- 
sents a new application of PSO with path relinking in a stochastic scenario. PSO is considered first in a
deterministic scenario for solving the Task Assignme nt Problem (TAP) and hereafter for a resource allo- 
cation problem in a petroleum terminal. This is considered for evaluating PSO in a problem subject to
uncertain ty whose performance can only be evaluated by simulation. In this case, a discrete event sim- 
ulation is built for modeling a real-world facility whose typical operations of receiving and transferring 
oil from tankers to a refinery are made through intermediary storage tanks. The simulation incor porates 
uncertain data and operational details for optimization that are not considered in other mathematical 
optimi zation models. Experiments have been carried out considering issues that affect the choice of
parameters for both optimization and simulation. The results show advantages of the proposed approach 
when compared with Genetic Algorithm and OptQuest (a commercial opt imization package).

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction 

Particle Swarm Optimiza tion (PSO) is a technique developed by
Engelbrecht (2007), Kennedy and Eberhart (1995). It is inspired on
the behavior of birds in flocks where solutions to a given optimiza- 
tion problem, called particles, ‘‘fly’’ (like birds) through a multidi- 
mensional search space. Similarly to Genetic Algorithms (GAs),
PSO can be classified as a bio-inspir ed paradigm. PSO was first
developed for continuous optimizati on problems. However , re- 
search of PSO applications for combinatori al optimization prob- 
lems can be found in the recent literature (Wang, Cai, Zhou,
Wang, & Li, 2011; Kennedy & Eberhart, 1997; Rosendo & Pozo,
2010; Souza, Goldbarg, & Goldbarg, 2006; Hu, 2011 ). In discrete 
spaces a technique named path relinking (Glover et al., 1999 ) can 
be used to move a particle (solution) toward another one, generat- 
ing a path between the two solutions.

This paper proposes a PSO-based optimization approach where 
a particular path relinking technique is adopted for moving parti- 
cles. Additionally, the PSO algorithm is modified to deal with ran- 
domness. In this case, simulation is used whenever the fitness of a
particle cannot be captured by a simple computation. PSO has been 
chosen mainly due the fact that it is easy to implement with few 

paramete rs to adjust, and interesting results have also been ob- 
tained with PSO for combinatori al optimization (literature has 
demonst rated it gets better results in a faster and cheaper way 
when compare d with other methods (Poli, 2008 )). Two applica- 
tions are considered in this paper to emphasize these PSO proper- 
ties. Results for both applicati ons are compared with those 
obtained by a Genetic Algorithm-b ased approach. In the first part 
of experiments, PSO is considered in a simple scenario (the Task 
Assignme nt Problem – TAP) where simulation and randomness 
are not present. In the second part, PSO is applied in a more com- 
plex scenario involving simulation whose results are also com- 
pared with those obtained by OptQuest (Kleijnen & Wan, 2007 )
(a well-known and fully integrated optimizati on package of ARENA 
simulatio n framework (Kelton, Sadowski, & Sturrock, 2007 )). Then,
PSO should be adapted to solve a complex combinatori al problem 
subject to uncertain data. The proposed approach computes the fit-
ness according to an average performanc e measure obtained over a
set of simulation replications. In this case, PSO is used to optimize 
the utilization of piers and tanks in a complex petroleum terminal.
Operational details and uncertain informat ion are incorporate d
into optimization.

There are two main contributions of this paper. The first is that 
the PSO algorithm was modified to deal with combinatorial prob- 
lems in scenarios of randomness whose results have only been re- 
cently reported in the literature (Mukhef, Farhan, & Jassim, 2008;
Jiao, Chen, & Yan, 2011 ). These modifications are related to: (i)
introduct ion of the path relinking techniqu e where a particle 
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encodes sets of same type resource s of the application (previous
approaches adopt this technique in other application contexts 
(Rosendo & Pozo, 2010; Souza et al., 2006 )) and (ii) analysis of path 
relinking for PSO subject to uncertain information (path relinking 
has not been previously used in scenarios of randomn ess). The sec- 
ond contribution was in the modeling. This includes (i) formalizi ng
the description of the purpose of the approach in a path relinking 
context, firstly by adapting the notation of combinatorial PSO ap- 
proaches when they use particles with permutation -based encod- 
ing and secondly, by redefining the velocity equation, especially 
when the terms associated with inertial, cognitive and social com- 
ponents are presented and (ii) a real-world facility that incorpo- 
rates uncertain data is modeled and operational details which are 
not considered in other mathematical optimization models are ta- 
ken into account for optimization.

The paper is organized as follows. Section 2 presents details 
about PSO and its impleme ntation. The addresse d problems are de- 
scribed in Section 3. Section 4 presents our proposed simulation 
model and optimizati on approach. Results are shown in Section 5
followed by conclusions in Section 6.

2. Particle Swarm Optimizati on (PSO)

The particle swarm algorithm adjusts trajectories of a popula- 
tion of particles through a problem space using information about 
each particle’s best performanc e and the best performanc e of its 
neighbors.

Consider a particle (candidate solution) positioned in the search 
space RD at current discrete time t represented by a vector 
pt ¼ pt

1; p
t
2; � � � ; pt

D

� �
. The particle pt is moved, by a velocity vector 

vtþ1 ¼ v tþ1
1 ; � � � ;v tþ1

D

� �
, to a new position pt+1 according to the fol- 

lowing equation:

ptþ1 ¼ pt þ vtþ1: ð1Þ

Usually, each element of the velocity vector is updated by iner- 
tial, cognitive and social components as defined by the following 
equation:

v tþ1
j ¼ w � v t

j þ ðc1r1Þ � v t
jðcognÞ þ ðc2r2Þ � v t

jðsocialÞ; ð2Þ

where v t
j is taken from the current velocity (or inertia l component ),

v t
jðcognÞ ¼ bestj � pt

j

� �
corresponds to the cognitive component with 

bestj taken from the current best position achieved so far by the par- 
ticle, and v t

jðsocialÞ ¼ bestjðglobalÞ � pt
j

� �
corresp onds to the social com- 

ponent with bestj(global) taken from the current best position 
achieved so far by the whole swarm. The coefficients w, c1 and c2

define how much a particle trust in its previou s moveme nt (inertial
component ), own history (cognitive component ) and in the whole 
set of particles (social component ), respective ly (Engelbre cht,
2007). The terms r1 and r2 are random numbers drawn from an uni- 
form distribution . The PSO algorithm initiates with a randomly gen- 
erated swarm (position and velocity’s particle) which is then 
updated for each iteration t (bestj is updated for each particle 
and bestj(global) for the whole swarm). When a maximum of T itera-
tions is reached, the best solution is bestglobal = (best1(global), . . . ,
bestD(global)).

Compared to other Evolutionar y Algorithms (EAs), PSO presents 
some advantages such as easy implementati on and few paramete rs
to adjust. PSO has been successfu lly applied in many areas: non- 
linear optimization, artificial neural network training, fuzzy con- 
trol, and other areas where EA can be applied. Mostly PSO gets bet- 
ter results with less computati onal effort when compared with 
other methods (Hu, 2011 ). Although PSO was first developed for 
continuous optimizati on problems , interesting results have also 
been obtained for combinatorial optimization. In most cases, the 
original equations are maintain ed.

The first version of PSO for discrete problems was presented in
Kennedy and Eberhart (1997). In this work, Kennedy and Eberhart 
proposed an array of binary values to encode each particle. The 
velocity is defined as an array of probabilities of changing from 1
to 0 and vice versa. In other words, if v tþ1

j ¼ 0:20, there is twenty 
percent of chance that ptþ1

j will be one, and eighty percent of
chance that it will be zero. If previous best positions have had a
zero in the jth component (i.e. bestj = 0), then bestj � pt

j

� �
can be

reasonabl y calculated as �1 or 0 and used to weight a change in
the probability of v tþ1

j for the next step. Eq. (2) remains unchanged,
except that now each value considered in the jth component is an
element of {0,1} and v tþ1

j must be constrained into the interval of
probabili ty [0.0,1.0]. This way, the dimension of a particle move- 
ment can be seen as the number of bits changed from one iteration 
to another in a binary search space. A particle does not move if no
bit is toggled, whereas it executes a full movement if all bits are 
toggled.

In Rosendo and Pozo (2010) and Souza et al. (2006), a technique 
named path relinking is used to move a particle toward another 
one. Path relinking is an intensification technique whose idea 
was originally proposed by Glover in the context of scheduling 
methods with better decision rules for job shop problems (Glover
et al., 1999 ). Generally speaking, this strategy generates a path be- 
tween two solutions. Assuming a source solution pt and a destina- 
tion solution pt+1, a path is a sequence of changes (steps) pt0,
pt1, . . . ,ptm with pt = pt0 and ptm = pt+1 such that pt(k+1) is obtained 
from ptk by using movements that reduce the distance between 
source and destination. This idea is used in some of the literature 
with discrete spaces to redefine velocity in terms of two particles 
pa and pb such that v = pa � pb or pa = pb + v, i.e., by applying v to pb

results in pa. This technique is used in our proposed optimization 
approach according to Rosendo and Pozo (2010), but using a
particular notation suitable to represent permutations. The 
main contributi on is a well-defined procedure for applying a
list of permutation s in the elements of a particle in terms of its 
inertial, cognitive and social components as described in the next 
section.

2.1. The proposed PSO-base d approach 

In our proposed approach each particle in the swarm is repre- 
sented by a list of values indicating a resource allocation for the 
problem being optimized, and velocity is represented by a list of
permuta tions of elements necessary to move pt toward pt+1. The 
movement is based on the following equation:

ptþ1 ¼ v tþ1ðptÞ; ð3Þ

where the velocity vt+1 is an operator represented by a list of pairs of
indexe s indicatin g which elements of pt should be swapped . For 
exampl e, assuming pt = (11,22,33,44,55) and vt+1 = {(1,2), (2,3)},
then pt+1 = vt+1((11,22,33,44,55)) = (22,33,11,44,55).

By consideri ng the path relinking techniqu e previously 
discussed, lets define how a particle pt = (22,33,11,55,44) is
moved to pt+1 = (11,22,33,44,55) using a list of three 
permuta tions. Consider v tþ1 ¼ v tþ1

1 ;v tþ1
2 ; v tþ1

3

� �
and a path pt0,

pt1, pt2, pt3 such that ptðkþ1Þ ¼ v tþ1
kþ1ðptkÞ; k ¼ 0;1;2. As

ptþ1
1 ¼ pt

3 ¼ 11, v tþ1
1 ¼ ð1;3Þ and pt1 = (11,33,22,55,44). Simi- 

larly, v tþ1
2 ¼ ð2;3Þ; pt2 ¼ ð11;22;33;55;44Þ, v tþ1

3 ¼ ð4;5Þ and pt3 =
(11,22,33,44,55). Hence, vt+1 = {(1,3), (2,3), (4,5)}. Although using 
an integer encoding, a binary encoding is straightforwar d.

This procedure can be generalized by considering the inertial,
cognitive and social components in the following order (b�c stands
for floor and j�j for cardinality):

1. u = bw � jvtjc permutation s for the inertial component vt;
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