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a b s t r a c t

Forecasting the unit cost of every product type in a factory is an important task to the factory. After the
unit cost of every product type in a factory is accurately forecasted, several managerial goals (including
pricing, cost down projecting, capacity planning, ordering decision support, and guiding subsequent
operations) can be simultaneously achieved. However, it is not easy to deal with the uncertainty in the
unit cost. In addition, most references in this field were focused on costing and seldom investigated
the forecasting of the unit cost. To tackle these problems, the hybrid fuzzy linear regression (FLR) and
back propagation network (BPN) approach is applied to forecast the unit cost of every product type in
a wafer fabrication plant, which is usually referred to as the determination of the effective cost per
die. In practical situations the long-term effective cost per die of a product type is usually approximated
with a linear regression (LR) equation, according to the ‘‘continuous cost down’’ philosophy, which is
prone to error. Conversely, the proposed FLR–BPN approach is more accurate and be able to deal with
the uncertainty in the unit cost in a simple and intuitive way. For evaluating the effectiveness of the pro-
posed methodology, a demonstrative case was used. Experimental results showed that the hybrid FLR–
BPN approach was superior to some existing approaches in forecasting accuracy and precision.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Forecasting the unit cost of every product type in a factory is
an important task to the factory because of the following rea-
sons:

(1) If the future cost is over-forecasted, then the efforts and
investment on cost reduction might be wasted.

(2) Conversely, if the future cost is under-forecasted, then the
profitability of the product will be over-forecasted, which
leads to incorrect investment and production decisions.

After the unit cost of every product type in a factory is accurately
forecasted, several managerial goals (including pricing, cost down
projecting, capacity planning, ordering decision support, and
guiding subsequent operations) can be simultaneously achieved.
However, it is not easy to deal with the uncertainty in the unit cost
of a product type, especially in a wafer fabrication factory which is
known a very complicated production system. In addition, most
references in this field were focused on costing (i.e. to reasonably
distribute all related expenses among all product types) and seldom
investigated the forecasting of the unit cost. Carnes (1991) estab-
lished the basic equation for calculating the unit cost of a wafer.

Carnes also compared the long-term costs of owning two
alternative machines, but did not distribute the costs among the
product types made on these two machines. Wood (1997) defined
the minimum wafer cost as the minimum costs of all operations
by the same machine. In Pfitzner et al.’s viewpoint, reclaiming
wafers becomes more and more important in reducing the unit cost
as the size of wafer grows (Pfitzner et al., 2001).

There are two unit costs in a wafer fabrication factory, i.e. the
unit costs of a wafer or a die. To calculate or forecast the unit cost
of a wafer, many factors including factory capacity, factory utiliza-
tion, the depreciation approach, technology (line width, number of
mask layers) have to be taken into account (icknowledge.com,
2003). When these factors are stable, the fluctuation in the unit
cost of a wafer can be controlled. There are three parts constituting
the unit cost of a wafer: material costs, labor costs, and overhead
costs. The unit cost can also be further broken down into the
following items: depreciation, tool maintenance, direct labor,
indirect labor, facilities, material, consumables, and monitors. In
other words, to forecast the future unit cost of a wafer, you need
to foresee the possible changes in these items, which is really a
tough task. On the other hand, the unit cost of a die is dependent
on the die yield (or the defect density) of the product type which is
stochastic and difficult to forecast. Nevertheless, the unit cost of a
die basically follows a learning process, which provides an
opportunity of grasping the future trend of the unit cost. There
are four types of learning processes: negative acceleration, positive
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acceleration, plateaus, and ogive (Bills, 1934). Describing the cost
improvement process as a learning process belongs to the
‘‘negative acceleration’’ category and dated back to Wright
(1936), in which a learning curve was used to denote the relation-
ship between the unit cost and the cumulative output in a stable
process. It also denoted the relationship between the unit defect
rate and the cumulative output in the stable process. In the
practice, the unit cost per die is often derived from the estimated
yield. This study is also based on the same concepts.

There are several ways of representing the unit cost of a die.
Among them, the effective cost per die (ECPD) is the most com-
monly used one. The ECPD is calculated by dividing the unit wa-
fer cost by the average number of good dies on a wafer. The
ECPD is important because it can be compared with the price
of the product type in evaluating the profitability. In practical
situations the trend in the ECPD is usually approximated with
a linear equation (see Fig. 1), according to the management phi-
losophy of ‘‘continuous cost down’’. The linear model is subjec-
tive and might be prone to error. Considering the example in
Fig. 1, the coefficient of determination (R2) of the linear model
is only 0.3909.

To further enhance the performance of forecasting the ECPD of
every product type in a wafer fabrication factory, Chen and Lin’s
hybrid fuzzy linear regression (FLR)–back propagation network
(BPN) approach (Chen & Lin, 2008) is applied in this study. The hy-
brid FLR–BPN approach has been applied to various fields other
than unit cost forecasting. In the proposed methodology, multiple
experts (or decision makers) construct their own FLR equations
from various viewpoints to forecast the ECPD of a product type.
Compared with the existing LR approach, the FLR approach has
the following advantages:

(1) An FLR model is more flexible than LR and be able consider
the variation in the ECPD.

(2) It is easier to incorporate subjective judgments into an FLR
model (Chen & Wang, 1999).

(3) An FLR model might be more precise than LR (Chen & Lin,
2008).

Each FLR model is usually converted into an equivalent linear
programming (LP) model (Tanaka & Watada, 1988; Peters, 1994)
to be solved, but in Chen and Lin’s approach is replaced with two
equivalent nonlinear programming (NP) problems (Chen & Lin,
2008) because the incorporation of expert opinions about the ef-
fects of outliers changed the objective function to a nonlinear
one. The ECPD forecasted with an FLP model is a fuzzy value that
contains the actual value. In addition, the ECPD forecasted by dif-
ferent experts might not be equal and therefore need to be aggre-
gated in some way. Further, these expert opinions can also be
considered as unequally important. In the hybrid FLR–BPN ap-
proach, a two-step aggregation mechanism is applied. At first, fuz-
zy intersection (FI) is applied to aggregate the fuzzy ECPDs

forecasted by different experts into a polygon-shaped fuzzy num-
ber, in order to improve the forecasting precision. After that, since
the shape of the polygon-shaped fuzzy number is so special, a BPN
is constructed to defuzzify the polygon-shaped fuzzy number and
to generate a representative/crisp value, so as to enhance the fore-
casting accuracy.

The rest of this paper is organized as follows. Section 2 intro-
duces the hybrid FLR–BPN which is composed of three steps. A
demonstrative example is used to demonstrate the applicability
of the proposed methodology. The forecasting accuracy and preci-
sion of the proposed methodology are evaluated and compared
with those of some existing approaches in Section 3. The advantage
of the proposed methodology over the existing approaches is also
examined with statistical analyses. Based on analysis results, some
points are made. Finally, the concluding remarks and some direc-
tions for future research are given in Section 4.

2. The hybrid FLR–BPN approach

Parameters that will be used in this study are defined as
follows:

(1) C: the unit wafer cost.
(2) ~ct: the fuzzy ECPD forecast at period t. ~ct ¼ ðct1; ct2; ct3Þ if

represented with a triangular fuzzy number (TFN). There
are various types of fuzzy numbers with different shapes
(see Fig. 2). Among them, a TFN is easily implemented and
has been universally applied to numerous applications (e.g.
Chen & Wang, 1999; Huang, Chen, & Wang, 2001; Chen,
2003). Further, since at the aggregation stage the focus is
on the corners of the FI of fuzzy forecasts, the shapes of
the fuzzy forecasts become not that important. Further, a
Gaussian or bell-shaped fuzzy number is symmetric, while
a TFN is the simplest fuzzy number that can be asymmetric.

(3) ct: the actual ECPD at time period t.
(4) G: gross die.
(5) T: the current time.
(6) Yt: the yield at time period t.
(7) Y0: the asymptotic/final yield.

"continuous cost down" linear equation
ECPD = -0.0828t  + 2.0066

R2 = 0.3909
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Fig. 1. Linear model of the ECPD.
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Fig. 2. Some types of fuzzy numbers.
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