
Self Controlling Tabu Search algorithm for the Quadratic Assignment Problem q

Nilgun Fescioglu-Unver a,⇑, Mieczyslaw M. Kokar b

a Department of Industrial Engineering, TOBB University of Economics and Technology, Ankara, Turkey
b Electrical and Computer Engineering Department, Northeastern University, Boston, MA, USA

a r t i c l e i n f o

Article history:
Received 10 November 2008
Received in revised form 24 November 2010
Accepted 24 November 2010
Available online 29 November 2010

Keywords:
Self-controlling software
Tabu search
Reactive search
Quadratic Assignment Problem

a b s t r a c t

This paper addresses the application of the principles of feedback and self-controlling software to the
tabu search algorithm. We introduce two new reaction strategies for the tabu search algorithm. The first
strategy treats the tabu search algorithm as a target system to be controlled and uses a control-theoretic
approach to adjust the algorithm parameters that affect search intensification. The second strategy is a
flexible diversification strategy which can adjust the algorithm’s parameters based on the search history.
These two strategies, combined with tabu search, form the Self Controlling Tabu Search (SC-Tabu) algo-
rithm. The algorithm is implemented and tested on the Quadratic Assignment Problem (QAP). The results
show that the self-controlling features of the algorithm make it possible to achieve good performance on
different types of QAP instances.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Many real life combinatorial optimization problems are classi-
fied as NP-hard. Finding solutions to such problems within reason-
able time limits, may not be possible (Garey & Johnson, 1979;
Hertz, Taillard, & de Werra, 1997, cha 5). Heuristic algorithms often
provide good solutions to optimization problems within reason-
able time limits, however heuristic algorithm performance de-
pends heavily upon the selected values for several parameters of
the algorithms. A heuristic with a given set of parameter values
that performs well on one type of problem may perform poorly
on another type. The selection of appropriate values for search
parameters is an active area of research (Adenso-Díaz & Laguna,
2006; Hutter, Hamadi, Hoos, & Leyton-Brown, 2006; Xu, Chiu, &
Glover, 1998).

Two approaches to parameter selection have been described in
the literature: parameter tuning and reactive search. Off-line
parameter tuning methods use experimental design techniques
and statistical analysis methods (Xu et al., 1998) to adjust algo-
rithm parameters so that a search algorithm performs well on a
given set of problems. Procedures combining experimental design
and local search techniques are also used for this purpose
(Adenso-Díaz & Laguna, 2006). Machine learning is often used to
tune algorithm parameters automatically (Birattari, Stutzle,
Paquete, & Varrentrapp, 2002; Hutter et al., 2006). Reactive search
algorithms modify algorithm parameters and/or strategies during

the search through a feedback mechanism which uses information
about the search history (Battiti & Brunato, 2007, chap. 21). These
algorithms can adapt to the local characteristics of the search
space.

One of the best known reactive search algorithms is Reactive
Tabu Search (Battiti & Tecchiolli, 1994), which is a modification
of tabu search. The tabu search algorithm searches the solution
space by applying moves to a solution in order to produce a new
one while forbidding the reversal of these moves for a certain num-
ber of iterations. Reactive Tabu Search uses a feedback mechanism
to determine the number of iterations during which reversing a
move is forbidden.

The Guided Local Search approach (Voudouris & Tsang, 1999)
guides the search by adjusting the penalty parameters, which are
added to the objective function value. Some genetic algorithms
(Eiben, Hinterding, & Michalewicz, 1999) use feedback to control
the mutation parameters. Another reactive search strategy in-
volves adapting the greediness of the search process according to
feedback coming from the search (Hoos, 2002). The improvement,
however, significantly depends upon the type of the problem being
solved.

In engineering, reaction mechanisms are based on control theory
(Franklin, Powell, & Emami-Naemini, 2002), which provides a
systematic approach to the design and analysis of the adaptation
process. In this research, we contribute to the area of reactive
search with two reaction strategies. The first strategy uses a
control-theoretic approach, in which a controller is used to keep
outputs of a dynamical target system at a desired level. In this
study, we treat the tabu search algorithm as a target system to
be controlled, and use control theory to design a feedback-based
reaction mechanism to improve the performance of the search by

0360-8352/$ - see front matter � 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cie.2010.11.014

q This manuscript was processed by Area Editor Ibrahim H. Osman.
⇑ Corresponding author. Tel.: +90 3122924278; fax: +90 3122924091.

E-mail addresses: nfunver@etu.edu.tr (N. Fescioglu-Unver), mkokar@ece.neu.
edu (M.M. Kokar).

Computers & Industrial Engineering 60 (2011) 310–319

Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier .com/ locate/caie

http://dx.doi.org/10.1016/j.cie.2010.11.014
mailto:nfunver@etu.edu.tr
mailto:mkokar@ece.neu. edu
mailto:mkokar@ece.neu. edu
http://dx.doi.org/10.1016/j.cie.2010.11.014
http://www.sciencedirect.com/science/journal/03608352
http://www.elsevier.com/locate/caie


controlling its intensification. The second strategy is a diversifica-
tion mechanism, which adapts algorithm parameters according
to feedback coming from the search history. These two strategies
work together to form a new tabu search algorithm – Self Control-
ling Tabu Search (SC-Tabu). The goal of this paper is not to develop
the most efficient search algorithm for a specific problem domain.
Rather, the goal is to show that control theory principles can be
used to design reaction mechanisms for heuristic algorithms.

We implemented the SC-Tabu algorithm for the NP-hard Qua-
dratic Assignment Problem (QAP) (Sahni & Gonzalez, 1976). Many
industrial problems, such as airport gate assignments, factory/of-
fice layout design, image processing, network design and printed
circuit board design can be modeled as QAP; therefore, the QAP
is a good testing domain. In our experiments, we used benchmark
problems from the Quadratic Assignment Problem Library (QAP-
LIB) (Burkard, Çela, Karisch, & Rendl, 2008).

In Section 2, we present short descriptions of tabu search algo-
rithm, intensification and diversification notions, the self-controlling
software concept, and the Quadratic Assignment Problem. Section
3 introduces the Self Controlling Tabu Search algorithm. The exper-
imental results with the problem domain and comparisons are pre-
sented in Section 4. Finally, Section 5 discusses overall results and
future research directions.

2. Background

In this section, we present information about the building
blocks of the developed algorithm. We also discuss the Quadratic
Assignment Problem, which is the application and test domain of
our algorithm.

2.1. Tabu search

Tabu search (TS) was introduced by Fred Glover (Glover, 1989,
1990a, 1990b) as an iterative heuristic-based algorithm for solving
combinatorial optimization problems. TS searches the solution
space in iterations. In each iteration, TS generates a solution neigh-
borhood via moves. Each move is a transformation that leads from
one solution to another and TS keeps the best solution.

The distinctive property of TS is its use of search history (mem-
ory) to prevent search from cycling back to previously visited solu-
tions. The search history is kept in the memory, called tabu list.
Tabu list keeps either some of the moves or just their attributes.
Reversing these moves is forbidden for a given number of itera-
tions, called the tabu tenure. Any moves that would undo these
transformations are listed as tabu. However, if a tabu move meets
the aspiration condition, also called the aspiration criterion (e.g. it
hitherto provides the best solution), then the move is allowed.

2.2. Intensification and diversification

Search algorithms often incorporate two strategies: greedy and
exploratory. In a minimization problem, the greedy strategy drives
the search toward the steepest decrease in the value of the objec-
tive function. This, however, may result in finding local optima, in-
stead of global. The exploratory strategy forces the search to
different regions in the search space so as not to miss the global
optimum.

Similar ideas are captured by the notions of intensification and
diversification. Intensification refers to focusing the search within
an attractive solution region, whereas diversification refers to driv-
ing the search to explore unvisited regions (Glover & Laguna,
1998).

When such opposing strategies like intensification and diversi-
fication are implemented, the balance between them is determined

by certain parameters of the algorithm. Most combinatorial opti-
mization problems have different solution distribution characteris-
tics within the search space. This creates unique requirements for
intensification and diversification which must be customized to
each situation. Using the same intensification and diversification
parameter settings for all types of problems would disregard a
specific problem’s needs. Moreover, these requirements not only
differ from problem to problem, but also often change in the course
of solving a single problem. In some problems, good solutions are
distributed more or less uniformly within the search space, while
in others good solutions are found in clusters (localities). Even if
the parameters are tuned for a specific problem instance, using
the same settings throughout a search leads to intensifying or
diversifying either more or less than needed.

2.3. Self-controlling software

Self-adaptive software is software that modifies itself in run-
time to achieve better performance. The idea of self-modifying
software has been explored for some time now. For instance, the
discipline of machine learning develops software that modifies it-
self in response to (typically) external feedback. Kokar, Eracar and
Baclawski (Eracar & Kokar, 1997; Kokar & Eracar, 2000; Kokar,
Baclawski, & Eracar, 1999) introduced the idea of self-controlling
software in which software can be considered as a target system
with its own dynamics and can be controlled with feedback based
on a Quality of Service function. A similar idea was later indepen-
dently introduced by Herring (Herring, 2002). Herring’s concept
was called the Viable Software Approach (VSA). It was modeled
after Stafford Beer’s Viable System Model (VSM) (Beer, 1981). In
software engineering, similar ideas are known as active software,
self-adapting software (Laddaga, 1999; Robertson & Laddaga,
2004), software cybernetics (Kai-Yuan, Cangussu, DeCarlo, &
Mathur, 2003) and autonomic computing (Kephard & Chess,
2003). VSM was also used as part of the design methodology for
autonomic systems (Taleb-Bendiab, Bustard, Sterritt, Laws, &
Keenan, 2005).

In this paper, we follow the approach described by Kokar et al.
(1999), which uses control theory principles to control the soft-
ware parameters. Control theory is used in engineering to regulate
mechanical, electrical, chemical, and computing systems. The
essential elements of a feedback control system are as follows:

� Target system, also referred to as Plant: The system to be
controlled.
� Controlled output: A characteristic (a variable) of the target sys-

tem that is controlled.
� Control input: A variable that affects the controlled output.
� Reference input: The desired value of the measured output.
� Disturbance: Variables that affect the measured output but are

not controlled.
� Control error: The difference between the value of the reference

input and the measured output.
� Controller: An equation (referred to as the control law) that

determines the control input value needed in order to achieve
the reference input.

The self-controlling software approach identifies the software
as a target system whose efficiency can be improved by dynamic
adjustments provided by a feedback-based controller (Kokar
et al., 1999).

2.4. Problem domain: Quadratic Assignment Problem

The Quadratic Assignment Problem can be described as a logis-
tics problem where n units are assigned to n different locations. For

N. Fescioglu-Unver, M.M. Kokar / Computers & Industrial Engineering 60 (2011) 310–319 311



Download	English	Version:

https://daneshyari.com/en/article/1134639

Download	Persian	Version:

https://daneshyari.com/article/1134639

Daneshyari.com

https://daneshyari.com/en/article/1134639
https://daneshyari.com/article/1134639
https://daneshyari.com/

