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a b s t r a c t

This paper proposes a model to find the optimal periodic inspection interval on a finite time horizon for a
two-component repairable system with failure interaction. Failure of the first component is soft, namely,
it does not cause the system stop. The second component’s failure is hard, i.e. as soon as it occurs, the
system stops operating. Failure of the first component has no effect on the second component’s behavior;
however, any failure of the second component increases the first component’s failure rate. Failure of the
first component increases the system operating costs and is detected only if inspection is performed.
Thus, the first component is periodically inspected and if a failure is observed during the inspection, it
is repaired. When the second component fails it is also repaired. Repairs of components restore them
to as good as new. The objective is to find the optimal inspection interval for the first component such
that, on a finite time horizon, the expected total cost is minimized. The proposed modeling approach
can be used in electrical distribution systems, where capacitor bank (first component) and high power
transformer (second component) are coupled in a distribution substation. A simplified numerical exam-
ple is given.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Over the last few decades the maintenance of multi-component
systems has become more and more complex. One reason is that
the systems are becoming more complicated having several inter-
acting components. On the one hand, interactions between compo-
nents complicate the modeling and optimization of maintenance
actions. On the other hand, interactions also offer the opportunity
to group maintenance which may save costs (Nicola & Dekker,
2008). Multi-component maintenance models are concerned with
optimal maintenance policies for a system consisting of several
units of machines or several pieces of equipment, which may or
may not depend on each other (Cho & Parlar, 1991). The goal is
to take into account the interactions among the units and to devel-
op a policy yielding lower maintenance cost for the system.

The interactions between units can be classified into economic,
structural and stochastic dependence. Economic dependence
implies that grouping maintenance actions either save costs
(economies of scale) or result in higher costs (because of, e.g. high
down-time costs), as compared to individual maintenance. Sto-
chastic dependence occurs if the condition of components
influences the lifetime distribution of other components. Structural
dependence applies if components structurally form a part, so that

maintenance of a failed component implies maintenance of work-
ing components (Cho & Parlar, 1991; Nicola & Dekker, 2008;
Thomas, 1986).

Stochastic dependence or failure interaction between compo-
nents can be defined in many different ways. In their seminal work
on stochastic dependence (Murthy & Nguyen, 1985a, 1985b),
authors introduce three different types of failure interaction for a
two-component system. Type I failure interaction implies that
the failure of component 1 can induce a failure of the other compo-
nent with probability p and has no effect on the other component
with probability 1 � p. Type II failure interaction implies that the
failure of component 1 can induce a failure of component 2 with
probability p, whereas every failure of component 2 acts as a shock
to component 1, without inducing an instantaneous failure, but
affecting its failure rate. Type III failure interaction implies that
the failure of each component affects the failure rate of the other
component. That is, every failure of one of the components acts
as a shock to the other component.

Ozekici (1988) proposes an optimal periodic preventive
replacement policy for a multi-component system with stochas-
tic/economic dependencies between components. Nakagawa and
Murthy (1993) derive the optimal number of failures to minimize
the expected cost per unit of a two component system with shock
damage interaction for an infinite time case. Sheu and Liou (1992)
consider an optimal replacement policy for a k-out-of-n system
subject to shocks.
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Jhang and Sheu (2000) propose a generalized age and block
replacement model for a multi-component system with failure
interaction. The ith component (1 6 i 6 N) has two types of fail-
ures. Type 1 (minor failures) occur with probability qi(t) and is cor-
rected by minimal repair, whereas type 2 (catastrophic failures)
occur with probability (1 � qi(t)) and induce the total failure of
all other components in the system. An unscheduled replacement
of the system is, then, performed. In Scarf and Deara (1998,
2003), block replacement and modified block replacement policies
for two-component systems with failure dependence and eco-
nomic dependence are considered. Where tractable, long-run costs
per unit time are calculated using renewal theory based argu-
ments; otherwise simulation studies are carried out.

Satow and Osaki (2003) propose a two parameter (T, k) replace-
ment model for a two-component system with shock damage
interaction. The system is replaced preventively whenever the to-
tal damage of component 2 exceeds k or the age of the system
reaches time T. Zequeira and Berenguer (2005) study inspection
policies for a two-component parallel standby system with failure
interaction and compared staggered and non-staggered inspec-
tions through numerical examples considering constant hazard
rates. Barros, Berenguer, and Grall (2006) introduce imperfect
monitoring in a two-component system with a parallel structure
and stochastic dependences. Lai and Chen (2006) propose an eco-
nomic periodic replacement model for a two-component system
with failure rate interaction. The system is completely replaced
upon failure, or preventively replaced at age T, whichever occurs
first.

The failures of the components of a system can be classified into
hard and soft failures (Meeker & Escobar, 1998; Taghipour,
Banjevic, & Jardine, 2010; Wang, 2008). Hard failures are self-
announcing and are fixed as soon as they occur. Soft failures are
failures that do not make the system stop, but can reduce the sys-
tem’s performance and increase the system operating costs. Soft
failures are usually not self-announcing and are detected and fixed
only at the scheduled inspection. Thus, there is a time delay
between real occurrence of a soft failure and its detection.

The delay-time concept has been widely used for modeling
the problems of inspection maintenance and planned mainte-
nance interventions. The delay time defines, Wang (2008), the
failure process of an asset as a two-stage process. The first stage
is the normal operating stage from new to the point that a

hidden defect has been identified. The second stage is defined
as the failure delay time from the point of defect identification
to failure. It is the existence of such a failure delay time which
provides the opportunity for preventive maintenance to be car-
ried out to remove or rectify the identified defects before failures.
With appropriate modeling of the durations of these two stages,
optimal inspection intervals can be identified to optimize a crite-
rion function of interest.

In Wang (2008), an outline of the delay time concept has been
given and two delay time inspection models of a single component
and a complex system has been introduced. Using this concept, in
Wang (2009), an inspection model for a process with two types of
inspections and repairs is addressed. However, as opposed to
assuming that failure can be observed only by an inspection, it is
assumed that failures can reveal by themselves. For the two types
of inspection, i.e. minor and major inspection, the problem is, then,
to determine the optimal constant inspection intervals. In Wang,
Banjevic, and Pecht (2010), a multi-component and multi-failure
mode inspection model based on the delay time concept is
proposed.

There have been not many papers that treated maintenances for
a finite time span, because it is more difficult theoretically to dis-
cuss optimal policies for a finite time span. However, the working
times of most units are finite in the actual field, Nakagawa and
Mizutani (2009). The importance of maintenance for aged units
is much higher than that for new ones because probabilities of
occurrences of severe events would increase. Therefore, mainte-
nance plans have to be reestablished at appropriated times for a
specified finite interval. In Nakagawa and Mizutani (2009), modi-
fied replacement policies which convert three usual models of
periodic replacement with minimal repair, block replacement
and simple replacement to replacement ones for a finite time span
have been proposed.

Taghipour et al. (2010) propose a model to find the optimal
periodic inspection interval which minimizes the expected total
cost on a finite time horizon for a complex repairable system.
The system considered in their study consists of several compo-
nents at risk of occurrence of hard and soft failures and it is as-
sumed that there is no failure interaction between components.
However, in practice, for example in energy sector, there are sev-
eral multi-component systems where failure of, at least, one com-
ponent increases other components’ failure rate. Thus, this

Nomenclature

k1(x) the average failure rate of the first component at time x
kj

1ðxÞ the failure rate of the first component at time x, pro-
vided that the number of failures of the second compo-
nent from the beginning of planning horizon until time
x is equal to j; j = 0, 1, 2, . . .

k2 the failure rate of the second component
N2(x) a random variable representing the number of failures

of the second component from the beginning of plan-
ning horizon until time x

p the percent of the first component’s failure rate increase
due to the occurrence of one failure of the second com-
ponent

T the planning horizon length (e.g. one year) which is
known and fixed

n the number of inspections to be performed on the first
component during the cycle T

s the time between two consecutive inspections, s = T/n
sL the minimum feasible inspection interval
Cs

1 the cost of each inspection of the first component

Cd
1

the cost of each perfect repair of the first component

Cp
1 the downtime penalty cost associated to the first com-

ponent per each unit of elapsed time from the soft fail-
ure of the first component to its detection at the
inspection time

t the initial age of the first component at the beginning of
the cycle T

((k � 1)s, ks] kth inspection interval in the cycle T, k = 1, 2, . . . , n
Pk(t) the probability that the first component dose not fail in

kth inspection interval of the cycle T, provided that we
know that its age at the beginning of the cycle T is equal
to t and that it is as good as new at that time

ek(t) the expected survival time of the first component in kth
inspection interval of the cycle T, provided that we
know the initial age of this component at the beginning
of the cycle T is equal to t and it was healthy until t

E½Cððk�1Þs;ks�
1 � the expected total cost of the first component in kth

inspection interval of the cycle T, i.e. from a scheduled
inspection at ks over time period ((k � 1)s, ks]

E CT
1

h i
the expected total cost of the first component in the cy-
cle T
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