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a b s t r a c t

We study the problem of unrelated parallel-machine scheduling with deteriorating maintenance activi-
ties. Each machine has at most one maintenance activity, which can be performed at any time throughout
the planning horizon. The length of the maintenance activity increases linearly with its starting time. The
objective is to minimize the total completion time or the total machine load. We show that both versions
of the problem can be optimally solved in polynomial time.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Production scheduling and preventive maintenance planning are
fundamental operational problems in the manufacturing industry.
The simultaneous consideration of these two problems has received
increasing attention from the scheduling research community and
the corresponding scheduling problem is commonly known as
‘‘machine scheduling with availability constraints’’. Most of the
studies on this problem assume that the maintenance time is con-
stant and known in advance. However, some studies assume that
the maintenance time is constant while the starting time of the
maintenance activity is a decision variable, which can take place
within a known time interval. On the other hand, Lee and Leon
(2001) consider single-machine scheduling with a rate-modifying
activity. The rate-modifying activity is optional, which, if performed,
changes the production rate of the machine. For more information,
the reader may refer to the surveys on this subject by Schmidt
(2000), Ma, Chu, and Zuo (2010) and Lee (2004).

It is noted that all of the above studies assume that the length of
the maintenance activity is a constant regardless of the machine
conditions. However, in real production, the length of the mainte-
nance activity performed on a machine may depend on the state
(e.g., running time) of the machine. For example, in the timber
industry, log band mills are one of the main machines in a sawmill.
Generally, the saw of a log band mill is maintained by an auto band
saw sharpener to sustain the sharpness of its teeth. Specifically, the

earlier a log band mill undergoes the teeth sharpening mainte-
nance activity, the less blunt are its teeth, so the less time is needed
to sharpen them. The motivation for this study stems from a saw-
mill that cuts various sizes and shapes of wood. Each log band mill
is operated by a skilled worker. Typically, several log band mills are
simultaneously available and a job (log) can be processed by any
one of them. The conditions of the log band mills and workers
are different. Therefore, the jobs have different processing times
depending on the log band mills selected to process them.

Kubzin and Strusevich (2005) study a two-machine flow shop
scheduling problem with no-wait in process to minimize the
makespan with a maintenance period on one of the machines. They
assume that the length of the maintenance activity depends on its
starting time and provide a polynomial time approximation
scheme for the problem. Kubzin and Strusevich (2006) consider
the two-machine open shop and flow shop scheduling problems
to minimize the makespan. They assume that each machine has
to be maintained exactly once during the planning horizon and
the length of each of maintenance activity depends on its starting
time. They show that the open shop problem is polynomially solv-
able and the flow shop problem NP-hard, for which they present a
fully polynomial approximation scheme and a fast 3/2-approxima-
tion algorithm. Mosheiov and Sidney (2010) study a single-
machine scheduling problem with an option to perform a deterio-
rating maintenance activity. The objectives are to minimize the
makespan, total completion time, maximum lateness, number of
tardy jobs, and total earliness, tardiness, and due-date cost. They
introduce polynomial time solutions for all these problems. Yang
and Yang (2010) consider a single-machine scheduling problem
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with a position-dependent aging effect described by a power func-
tion and maintenance activities that have variable maintenance
durations. The objective is to find jointly the optimal maintenance
frequency, the optimal maintenance positions, and the optimal job
sequence to minimize the makespan. They show that the problem
can be optimally solved in polynomial time.

We extend the model proposed by Mosheiov and Sidney (2010)
to the unrelated parallel-machine setting. The objectives are to
minimize the total completion time and the total machine load.
We show that both versions of the problem can be optimally
solved in polynomial time.

2. Notation and problem formulation

A set J = {J1, J2, . . . , Jn} of n jobs are to be processed on m unrelated
parallel machines Mj, j = 1, 2, . . . , m. Let nj denote the number of jobs
assigned to Mj and P(n, m) = (n1, n2, . . . , nm) denote a job-allocation
vector, where

Pm
j¼1nj ¼ n. We assume, as in most practical situations,

that m < n. The jobs are non-preemptive and they are all available for
processing at time zero. Each machine can handle at most one job at
a time and cannot stand idle until the last job assigned to it has fin-
ished processing. Each machine requires at most one maintenance
activity, which can be performed at any time throughout the plan-
ning horizon. We say that the sole maintenance activity of Mj (which
is a rate-modifying activity), if it exists, is in position kj (0 6 kj6 nj) if
it is scheduled immediately after the completion time of the job
scheduled in the kjth position on Mj. Let aij (bij) denote the processing
time of job Ji (i = 1, 2, . . . , n) if it is scheduled before (after) the main-
tenance activity on Mj. Then the actual processing time of job Ji if it is
scheduled in the rth position on Mj is pijr = aij for r6 kj and pijr = bij for
r > kj, respectively, where aij P bij > 0 because the efficiency of job
processing improves after machine maintenance.

We say that a maintenance activity, given it is scheduled immedi-
ately after the processing of the job scheduled in position kj of Mj, is a
deteriorating maintenance activity (DMA) of Mj if its length increases
linearly with its starting time: TMAj = Tj + djtj, where Tj > 0, dj P 0, and
tj is the starting time of the DMA of Mj. The objectives are to minimize
the total completion time and the total machine load. For conve-

nience, we use
P

Ci to denote the total completion time and
P

Cj
max

the total machine load, where Ci denotes the completion time of Ji
and Cj

max denotes the makespan of Mj. Using the standard three-field
notation for scheduling problems (Lee & Lin, 2001; Pinedo, 2008), we
denote our scheduling problem as Rm|pijr, TMAj = Tj + djtj|c, where c,

c 2
P

Ci;
P

Cj
max

n o
, is the objective function to be minimized.

3. Problems analysis

We first consider the special case of the above problem that in-
volves a single machine, i.e., the 1|pi = (ai, bi), TMA = T0 + dtk|c prob-
lem. Assume that the DMA is scheduled immediately after the
processing of the job scheduled in the kth position of the machine
and the length of the DMA is TMA = T0 + dtk, where T0 > 0, d P 0,
and tk is the starting time of the DMA. If the job sequence is
p = (J1, J2, . . . , Jk, DMA, Jk+1, . . . , Jn), then the total completion time
and the makespan of p are, respectively,

Xn

i¼1

Ci ¼
Xk

i¼1

½ðn� iþ 1Þ þ dðn� kÞ�ai þ
Xn

i¼kþ1

ðn� iþ 1Þbi

( )

þ ðn� kÞT0

and

Cmax ¼
Xk

i¼1

ð1þ dÞai þ
Xn

i¼kþ1

bi

" #
þ T0

3.1. Minimizing the total completion time

In this sub-section we consider the Rm|pijr, nr, TMAj = Tj +
djtj|

P
Ci problem. Before developing the results, we introduce a

useful lemma and a proposition, which are used throughout the
rest of this paper.

Lemma 1. The number of nonnegative integer solutions to l1 + l2 +
� � � + lm = n is C(m � 1 + n, n).

Proof. See Mott, Kandel, and Baker (1986). h

Proposition 1. The number of nonnegative integer solutions to
l1 + l2 + � � � + lm 6 n is Cðmþ n;nÞ ¼ ðmþnÞ!

n!ðmÞ! and is bounded from above
by ð2nÞm

m!
.

Proof. Let lm+1 = n � (l1 + l2 + � � � + lm) P 0, which implies that
l1 + l2 + � � � + lm+1 = n, the number of nonnegative integer solutions
to which is C(m � 1 + n, n) by Lemma 1. It is evident that
Cðmþ n;nÞ ¼ ðmþnÞ!

n!m!
¼ ðmþnÞðmþn�1Þ���ðnþ1Þ

n!m!
6
ð2nÞm

m!
. This completes the

proof of Proposition 1.
We say that the DMA of Mj is in position lj (0 6 lj 6 n) if it is

scheduled immediately before the job scheduled in position ljth
to the last job on Mj. That is, lj = n means that we perform the
DMA before we process any job on Mj and lj = 0 implies that we
do not perform it on Mj in the current planning horizon. Let
(l1, l2, . . . , lm) denote a position-allocation vector of the DMAs. De-
fine yijs = 1 if Ji is in position sth to the last job processed on Mj and
yijs = 0 otherwise. Then we express the total completion time as

X
Ciðl1; l2; . . . ; lmÞ ¼

Xn

i¼1

Xm

j¼1

Xlj

s¼1

sbijyijs þ
Xn

s¼ljþ1

ðsþ djljÞaijyijs

2
4

3
5

þ
Xm

j¼1

ljTj ð1Þ

If the position (lj) of the DMA of each machine is known in advance,
then the last term on the RHS of (1) is a constant. To minimize (1) is

equivalent to minimizing
Pn

i¼1

Pm
j¼1

Plj
s¼1sbijyijs þ

Pn
s¼ljþ1ðsþ dj

h
ljÞaijyijs�. The problem can be formulated as the following n � nm
Constrained Asymmetric Assignment Problem (CAAP), where we
seek to assign the n jobs to nm positions on each machine, leaving
a total of nm � n positions unassigned:

Minimize
Xn

i¼1

Xm

j¼1

Xlj

s¼1

sbijyijs þ
Xn

s¼ljþ1

ðsþ djljÞaijyijs

2
4

3
5

subject to
Xn

i¼1

yi1s ¼ 1; s ¼ 1;2; . . . ; l1 ð2Þ

Xn

i¼1

yi1s 6 1; s ¼ l1 þ 1; l1 þ 2; . . . ;n ð3Þ

Xn

i¼1

yi2s ¼ 1; s ¼ 1;2; . . . ; l2 ð4Þ

Xn

i¼1

yi2s 6 1; s ¼ l2 þ 1; l2 þ 2; . . . ;n ð5Þ

Xn

i¼1

yims ¼ 1; s ¼ 1;2; . . . ; lm ð6Þ

Xn

i¼1

yims 6 1; s ¼ lm þ 1; lm þ 2; . . . ;n ð7Þ

Xm

j¼1

Xn

s¼1

yijs ¼ 1; i ¼ 1;2; . . . ;n ð8Þ

Xn

i¼1

yij1 P
Xn

i¼1

yij2 P � � �P
Xn

i¼1

yijn; j ¼ 1;2; . . . ;m ð9Þ

yijs 2 f0;1g; i ¼ 1;2; . . . ;n; j ¼ 1;2; . . . ;m;

s ¼ 1;2; . . . ;n ð10Þ
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