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This paper develops a maintenance strategy for repairable products that combines imperfect mainte-
nance actions at pre-scheduled times and minimal repair actions for failures. Under a power law process
of failures, an expected total cost is developed that involves the sum of the total cost of imperfect preven-
tive maintenances and the expected total cost of minimal repairs. Moreover, a searching procedure is pro-
vided to determine the optimal maintenance schedule within a finite time span of warranty. When the
parameters of the power law process are unknown, the accuracy of the estimated maintenance schedule
is evaluated based on data through an asymptotic upper bound for the difference of the true expected
total cost and its estimate. The proposed method is applied to an example regarding the maintenance
of power transformers and the performance of the proposed method is investigated through a numerical
study. Numerical results show that the proposed maintenance strategy could save cost whether an
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imperfect maintenance action or the perfect maintenance action is implemented.
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1. Introduction

Most products or systems are designed to be repaired rather
than replaced after failure in the real world. Maintenance policies
are fundamental under these conditions because a properly pre-
ventive maintenance (PM) strategy can save money and keep prod-
ucts running longer. A PM policy specifies the periodicity to
maintain a product through the product whole lifetime. Pham
and Wang (1996) mentioned that a maintenance action could be
classified into perfect maintenance, minimal repair (MR) or imper-
fect maintenance. A perfect maintenance restores a product to be
as good as new, an MR restores a product to have the same failure
rate condition as it had just right before failure and an imperfect
maintenance makes a product better than what it had before fail-
ure but not necessarily to be as good as new. Since the pioneer
work of Barlow and Hunter (1960), the combination of a perfect
PM and an MR has been of interest by many authors, for examples,
Gerstack (1977), Block, Borges, and Savits (1990), Park, Jung, and
Yum (2000), Lai, Leung, Tao, and Wang (2001) and Gilardoni and
Colosimo (2007).

In an optimal maintenance policy setting, the nonhomogeneous
Poisson process (NHPP) has played a key role in modeling the ran-
dom occurrences of failures. Let N(0,t) denote the number of fail-
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ures in the interval (0,t]. A process {N(0,t):t > 0}, which has
independent increments and N(0,0) = 0, is a Poisson process with
intensity A(t), if the random variable N(0,t) has a Poisson distribu-
tion and mean M(t) = E(N(0,t)) = fé A(u)du for t > 0. When the
intensity function A(t) is not constant and depends on the time t,
the Poisson process is called the NHPP. The most popular NHPP
is the power law process (PLP) which has a Weibull intensity
function,

At) = pt=1/6%, (1.1)

where 0 > 0 is the scale parameter and 8 > 0 is the shape parameter.
The PLP had been successfully applied to model the occurrences
of failures in a number of PM studies. Some good discussions
regarding the applications of NHPP have been published by Crow
(1974), Cox and Miller (1965), Ascher and Feingold (1984), Bain
and Engelhardt (1991), Rigdon and Basu (2000) and Pulcini
(2001). The model (1.1) is quite flexible in reliability studies be-
cause it includes the growth model when 0 < g < 1, the decay mod-
el when g >1 and the homogeneous Poisson process when g =1.
Assuming infinite operation time for a repairable product, Gilar-
doni and Colosimo (2007) proposed an optimal perfect PM sche-
dule which minimized the expected average total cost per unit
time. Moreover, they provided a large sample estimation proce-
dure for the determination of their PM schedule when the param-
eters of the PLP are unknown. However, the maintenance actions in
practical situations could be imperfect and the operation time for a
repairable product could be finite. This article relaxes the


http://dx.doi.org/10.1016/j.cie.2011.01.008
mailto:Yuhlong.Lio@usd.edu
http://dx.doi.org/10.1016/j.cie.2011.01.008
http://www.sciencedirect.com/science/journal/03608352
http://www.elsevier.com/locate/caie

T.-R. Tsai et al./Computers & Industrial Engineering 60 (2011) 744-749 745

conditions of Gilardoni and Colosimo (2007) to develop a new PM
plan in which repairable products undergo imperfect maintenance
actions within a finite time span of warranty. The objective of the
proposed PM policy is to minimize the expected total cost in a fi-
nite time span of warranty instead.

In Section 2, the proposed PM policy and a searching procedure
to setup the optimal PM schedule are developed for repairable
products when the time span of warranty is finite. In Section 3,
an asymptotic upper bound for the difference of the true expected
total cost and its estimate is provided to evaluate the accuracy of
the estimated PM schedule based on data. The proposed method
is illustrated via an example in Section 4. Moreover, the perfor-
mance of the proposed PM policy is compared with the one pro-
posed by Gilardoni and Colosimo (2007) in terms of the expected
average total cost per unit time. In Section 5, a numerical study
is conducted to evaluate the performance of the proposed PM pol-
icy for various combinations of parameters. Finally, concluding re-
marks are given in Section 6.

2. The proposed preventive maintenance model

Assume that a repairable product starts to operate at time zero
and undergoes m times of imperfect maintenance actions within a
finite time span of warranty, W. The imperfect maintenance action
satisfies the following conditions:

1. PM check points are scheduled after every t units of time such
that 0 <mt < W.

2. Each PM can return the product’s age x;=x=rt, where
i=1,2,...,mand 0 <r < 1.If r=0, then the maintenance action
has no effect to the product; while r =1, it represents a perfect
maintenance action which instantly returns the product to a
new condition.

3. The PM cost at the time t can be modeled as a linear function of
the product’'s age t and the returned product’s age x,
Cy(t,x) = a+ cix + cot, where a, ¢; and ¢, are nonnegative coeffi-
cients (see Yeh & Chen (2005)).

4. When a failure occurs between two PM check points, a MR is
applied. The cost for a MR is denoted by cp.

It should be noticed that if no PM action is implemented in the
operating time interval (0, W], then the expected total cost is given
as

Co = Cur - EIN(O, W)]. 2.1)

Otherwise, let the time interval ((0,W]=(0,7t]u(z,27]U---U
((m - 1)t,mt] U(mt,W] and y; denote the i™ cumulative return
time at the i™ PM action, where i=0,1,2,...,m, ¥o=0 and
yi = Sh_yx = irt for i=1,2,...,m. Therefore, the expected MR cost
in the i™ interval ((i — 1)t,it] is the cyg multiple of the expected
number of failures that occur within the interval. Moreover, the ex-
pected cost in the ith interval ((i — 1)t,it] is the sum of the expected
MR cost in the interval and the PM cost happened at the end of the
interval. Therefore, the expected cost in the ith interval can be
mathematically represented as,

Cur - EIN(( = 1)T = ;1,17 = yi1)] + Gp(iT, X). (22)

The expected total cost for the entire time interval, (0, W] can be
determined as follows:

Ctm) = S e - EIN(E — 1) — Yoy, 17— 1)

i=1

+CP(iTﬂx)}+CMR'E[N(mffym7wfym)]ﬂ (23)

where E[N(hy,hy)] = }Tf A(u)du, hy < hy. When a perfect PM is
applied and ¢; =c; =0, ((t,m) is reduced to Eq. (1) of Gilardoni &

Colosimo (2007) with T=W. However, when T=W is finite, the
term R = cyr - EIN(mt — y, W — yn)] may not be negligible and the
average expected total cost per unit of time % is, hence, different
from the Eq. (2) of Gilardoni & Colosimo (2007) under a perfect PM

with ¢; = ¢ = 0. The derivative of (7, m) with respect to 7 is

dc L& , ;
% = {omr - [@iA(aT) — bid(biT)] + (C1 + 1)} — Cmg

i=1

S [mri(W —mrt) + m(1 —r)A(m(1 —r)7)], (2.4)
where a; =i — ir+rand b;=(i — 1)(1 — r). Under the PLP of the Wei-

bull intensity function, Eq. (2.4) can be rewritten as,

dc(t,m) I [epppTi! B B .
e _;{ 7 (ai —bi) +C1T + Cyi

- C(% [ﬁmr(W —mrt)’ ' + (m(1 - r))/f/}f/“] (2.5)

and the second derivative of ((t,m) with respect to 7 is

2 m
d C;j(; m) _ (CI\/mﬂ(Hﬁ/j - 1)) {1-/32 {Z (af — bf) —(m(1 - r))/j}

i=1

+(mr)*(W — mrr)/’z}. (2.6)

It can be shown that 7, (af - b{‘) —(m(1 =)’ >0 for g>0.

Therefore, when > 1, % >0 and ((t,m) is a convex function
of 7 over 0 <t < W for a given m. Because the repairable product
is assumed to decay in reliability, only the case of 3> 1 is consid-
ered. Hence, the optimal 7;,, which minimizes the expected total
cost in the time interval (0,W] can be determined by solving
dC(t,m)/dt=0 over 0<t<W or 1, = W. For each m, the optimal
7;, can be solved numerically. The optimal PM number m* can be
obtained by

In practical applications, it is common for the MR cost to greatly ex-
ceed the PM cost. In addition, the expected number of failures is
increasing with respect to the length of operating time interval be-
tween two PMs when the PLP shape parameter > 1 and each PM
can improve the system state. Therefore, when the number of
PMs starts to increase from zero, it is expected to decrease the ex-
pected total cost, intuitively. However, when the number of PMs in-
creases to a certain level, the expected total cost would start to
increase. Based on this principle, a search algorithm shown in
Fig. 1 is proposed to find the optimal PM time schedule.

3. Statistical methods

In practical applications, parameters in the NHPP may not be
known in advance. It is necessary to estimate t based on data.
Assuming that a product could be operated for infinite time, Gilar-
doni & Colosimo (2007) discussed a procedure for the large sample
maximum likelihood estimation of their optimal maintenance
schedule based on the failure times observed from one or more
identical products under their proposed perfect PM policy. The ba-
sic ways for collecting data from a repairable product could be the
failure truncated or the time-truncated sampling. The failure trun-
cated sampling means that the data collection is ceased after a
specified number, k, of failures. The time truncated sampling
means that the data collection is ceased at a predetermined time T.

Let 0<t; <ty<---<t, < T denote the times to failures observed
until a predetermined time T for a NHPP with intensity function
A(t)=J(t|m), where u is a vector of the unknown parameters.
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