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a b s t r a c t

This paper presents a method for utilizing Data Envelopment Analysis (DEA) with sparse input and out-
put data using fuzzy clustering concepts. DEA, a methodology to assess relative technical efficiency of
production units is susceptible to missing data, thus, creating a need to supplement sparse data in a reli-
able and accurate manner. The approach presented is based on a modified fuzzy c-means clustering using
optimal completion strategy (OCS) algorithm. This particular algorithm is sensitive to the initial values
chosen to substitute missing values and also to the selected number of clusters. Therefore, this paper pro-
poses an approach to estimate the missing values using the OCS algorithm, while considering the issue of
initial values and cluster size. This approach is demonstrated on a real and complete dataset of 22 rural
clinics in the State of Kansas, assuming varying levels of missing data. Results show the effect of the clus-
tering based approach on the data recovered considering the amount and type of missing data. Moreover,
the paper shows the effect that the recovered data has on the DEA scores.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

DEA is a linear programming model, which measures the rela-
tive technical efficiency of decision making units by calculating
the ratio of weighted sum of its outputs to its inputs (Charnes,
Cooper, & Rhodes, 1978). Decision making units (DMUs) can be
defined as any production unit, in any for-profit or non-profit orga-
nizations, which consumes inputs and produces outputs. The DEA
model is run n times by changing the objective function each time
to determine the best set of weights which maximize the efficiency
of the DMU under evaluation, while the weights should remain
feasible for all the other DMUs. DEA not only measures efficiency
but also the amount of inefficiencies associated with each DMU
by comparing inefficient DMUs against efficient DMUs. By solving
the DEA model one can also obtain projection scores which repre-
sent the required increase in output or decrease in input for a DMU
to be fully efficient. DEA is widely recognized as an effective
method for measuring the relative efficiency of DMUs using a set
of multiple inputs and multiple outputs. Extension of this particu-
lar methodology and its application to vast number of fields since
its inception is presented in the works of Seiford (1997) and
Emrouznejad, Parker, and Tavares (2008).

The area of health care operations is very suitable for DEA anal-
ysis since clinics (or any health providing organization) are easily
defined as DMUs in the DEA context. The DEA analysis can accu-
rately show the efficient aspects of the clinics as well as areas that

need improvements. This work is based on a DEA analysis of clinics
in Kansas that serve the rural and medically underserved popula-
tion. One of the early findings of this research was that due to a
lack of reporting standards each clinic may collect or report a dif-
ferent set of data items. Thus, when conducting a DEA analysis, it is
common to find that some data items are not collected or collected
inappropriately, creating the issue of missing data.

The application of DEA analysis in health care started as one of
the earliest application domain. Analysis performed on American
institutions include analysis of hospitals in Wisconsin
(Nunamaker, 1983), inefficiencies in clinics (Sherman, 1984), phy-
sician efficiency (Ozcan, 1998), neurotrauma patients in the ICU
(Nathanson, Higgins, Giglio, Munshi, & Steingrub, 2003), health
maintenance organizations (Siddharthan, Ahern, & Rosenman,
2000), operating room efficiency (Basson & Butler, 2006), and local
health departments in US (Mukherjee, Santerre, & Zhang, 2010).
DEA applications outside the US include efficiency of nursing
homes in Italy (Garavaglia, Lettieri, Agasisti, & Lopez, 2011), mea-
sured productivity of hospitals in Holland (Blank & Valdmanis,
2010), efficiency of public hospitals in Thailand (Puenpatom &
Rosenman, 2008), efficiency of hospitals in Austria and Germany
(Helmig & Lapsley, 2001; Hofmarcher, Paterson, & Riedel, 2002),
and efficiency of long term care nursing care units in Finland
(Björkgren, Häkkinen, & Linna, 2001) are a few examples.

The research presented here was used primarily to evaluate the
efficiency of 41 KAMU (Kansas Association for the Medically
Underserved) clinics which include 19 federally supported clinics,
14 primary care clinics, seven free clinics, and one voucher pro-
gram. KAMU provides advocacy as well as training, technical assis-
tance, and communication services to the clinics in an attempt to
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develop best practices. The purpose of this DEA analysis was to
identify benchmarks and provide budget and resource recommen-
dations for inefficient clinics. The clinics used a data reporting tool
that collected up to 225 attributes. However, we found that a large
amount of data was sporadically missing since each clinic collected
a different subset of the data. In this study we reduced the data
analyzed to 13 parameters that deemed essential for the DEA study
and then developed the methodology presented herein to replace
the missing data.

This paper explores a solution approach towards generating the
missing data based on fuzzy clustering. Moreover, the paper dem-
onstrates the sensitivity of this approach to the initialization pro-
cess and to the cluster sizes chosen. The paper then shows the
effect of this approach on the data recovered as well as on the
DEA results. This contribution can help researchers improve the
accuracy of the DEA analysis by generating the missing values
more accurately, and also by understanding the effect of this ap-
proach on the DEA scores.

This paper is structured as follows: Section 2 provides a back-
ground and literature review of DEA and clustering approaches.
Section 3 presents approaches for clustering with missing data,
and Section 4 presents experimental results on the effect of the ini-
tial values as well as cluster sizes on the accuracy of the data recov-
ered. Section 5 demonstrates the data generation approach using
the actual clinical data with various patterns of missing values.
Section 6 shows the effect of the data recovery strategy on the
DEA analysis. Section 7 provides summary and conclusions.

2. Background

This section presents an introduction to basic DEA models, liter-
ature review of existing methods to handle missing values in DEA,
and as well as an introduction to clustering approaches and the ba-
sic clustering algorithms.

2.1. Introduction to DEA models

Common DEA notations:

DEA Data Envelopment Analysis
DMU Decision making unit, a unit which consume inputs

and produce outputs
DMUo DMU under evaluation or test DMU
n Total number of DMUs under evaluation
m Total number of input variables
s Total number of output variables
� Optimal solution value
vi Input multiplier variable of ratio model, "

i = 1, 2, . . . , m
ur Output multiplier variable of ratio model, "

r = 1, 2, . . . , s
X Matrix representation of input variables
Y Matrix representation of output variables
xji Represents input variables of DMUj, " i = 1, 2, . . . , m
yjr Represents output variables of DMUj, " i = 1, 2, . . . , s
[Xj, YJ] Vector of inputs and outputs for DMUJ

[Xo, Yo] Vector of inputs and outputs for DMUo

Consider a dataset of n DMUs which consume m inputs and produce
s outputs. Input and output data for DMUj are represented as,
xji(i = 1, 2, . . . , m), and yjr(i = 1, 2, . . . , s) respectively, where (i =
1, 2, . . . , n). Efficiency of each DMU is evaluated relative to the con-
straint set of all n DMUs, and needs n optimizations. DMU under
evaluation is represented by DMUo input and output vectors are

represented as [XoYo]. The values ur, vi represent output and input
weights of the multiplier model respectively.

Charnes et al. (1978) developed the first model (known as CCR).
This model can be classified into an input or output oriented mod-
el. Input oriented models aim at minimizing the inputs with no
change of outputs, whereas output oriented models aim at maxi-
mizing the outputs with no increase of inputs (Cooper, Seiford, &
Tone, 2000). CCR model is based on constant returns to scale
(CRS). The basic formulations of CCR input and CCR output models
are shown in Table 1.

Banker, Charnes, and Cooper (1984) modified the CCR model
creating the BCC model which employs variable return to scale
(VRS). It assumes that there exists a variable proportional change
between inputs and outputs. The BCC model has the production
frontier spanning the convex hull of the existing DMUs. This fron-
tier has piecewise linear and concave characteristics leading to the
variable return to scale characteristics.

This paper considers only the CCR input model (model 1) for
analysis. There are several other models of DEA such as Multiplica-
tive Model (Charnes, Cooper, Seiford, & Stutz, 1982), Additive Mod-
el (Charnes, Cooper, Golany, Seiford, & Stutz, 1985), Assurance
Region Model (Thompson, Singleton, Thrall, Smith, & Wilson,
1986), Cone Ratio Envelopment Model (Charnes, Cooper, Wei, &
Huang, 1989), Malmquist Index (Fare & Grosskopf, 1992), and
Super Efficiency Model (Andersen & Petersen, 1993) among many
others. Each such particular model has specific advantages when
compared to the basic CCR model.

2.2. DEA with missing data

The classical assumption of DEA is availability of numerical data
for each input and output, with the data assumed to be positive for
all DMUs (Cooper et al., 2000). This particular assumption limits
the applicability of the DEA methodology to real world problems
which contain missing values either due to human errors or tech-
nical problems.

In order to allow DEA analysis with missing data, minimal data
requirements were defined. These requirements state that at least
one DMU should have a complete set of inputs and outputs and
each DMU should have at least one input and one output (Fare &
Grosskopf, 2002). The accuracy of the results depends on the qual-
ity and quantity of the data. The difficulty of replacing missing data
values is due to the fact that, unlike statistical analysis, DEA is
based on a single set of data for each attribute.

The problem of missing data is well recognized in the DEA liter-
ature and therefore various approaches for mitigating this issue
have been discussed. One such approach is the exclusion of DMUs
with missing data from the DEA analysis (Kuosmanen, 2002). This
approach has an ill-effect on the efficiency score of the other par-
ticipating DMUs and may disturb the statistical properties of the
estimators. The exclusion of DMUs decreases the production possi-
bility set and increases the efficiency scores of the other units, and
may even affect the ranking order of the DMUs being studied. An
alternative mitigation approach is the use of dummy values such
as zero for replacing the missing output values and a large number
for replacing the missing input values. This approach can be

Table 1
Basic DEA formulations – multiplier approach.

CCR input oriented model CCR output oriented model

Max Z ¼
Ps

r¼1uryor

S:to (1)
Min Z ¼

Pm
i¼1v ixoi

S:to (2)Pm
i¼1v ixoi ¼ 1

�
Pm

i¼1v ixji þ
Ps

r¼1uryjr 6 08j ¼ 1; . . . ;n
ur ; v i P 8r ¼ 1; . . . ; s; i ¼ 1; . . . ;m

Ps
r¼1uryor ¼ 1

�
Pm

i¼1v ixji þ
Ps

r¼1uryjr 6 0
ur ; v i P 8r ¼ 1; . . . ; s; i ¼ 1; . . . ;m
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