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a b s t r a c t

We consider a single-machine batch delivery scheduling and common due date assignment problem. In
addition to making decisions on sequencing the jobs, determining the common due date, and scheduling
job delivery, we consider the option of performing a rate-modifying activity on the machine. The process-
ing time of a job scheduled after the rate-modifying activity decreases depending on a job-dependent fac-
tor. Finished jobs are delivered in batches. There is no capacity limit on each delivery batch, and the cost
per batch delivery is fixed and independent of the number of jobs in the batch. The objective is to find a
common due date for all the jobs, a location of the rate-modifying activity, and a delivery date for each
job to minimize the sum of earliness, tardiness, holding, due date, and delivery cost. We provide some
properties of the optimal schedule for the problem and present polynomial algorithms for some special
cases.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Meeting due dates is among the most important goals of sched-
uling. There are many practical situations in which a common due
date exists, e.g. in just-in-time production, in assembly scheduling,
or in batch delivery. Furthermore, it might be reasonable to assign
a common due date to a set of jobs to treat different customers
equally. Generally, two situations of due date determination
should be distinguished: (i) the common due date is (externally)
given or agreed upon and (ii) the common due date is determined
(internally) by the company. The latter situation corresponds to the
system in which, for some reason (e.g., appointment, technical con-
straints, etc.), several tasks are to be completed at the same time,
e.g., several jobs from the same customer form a single order or
the components of a product should be ready by the same time
for assembly. In chemical and food production, the common due
date model applies if some of the involved substances or compo-
nents have a limited life span (a ‘‘best before’’ time), which im-
poses a common due date on the whole mixture or the final
product. There are many papers that focus on the common due
date assignment problem (e.g., Adamopoulos & Pappis, 1995;
Birman & Mosheiov, 2004; Biskup & Jahnke, 2001; Cheng, 1984,

1987, 1989; Cheng, Chen, & Shakhlevich, 2002, 2004, 2007; De,
Ghosh, & Wells, 1991; Gordon & Strusevich, 2009; Hsu, Yang, &
Yang, 2011; Kahlbacher & Cheng, 1993; Li, Ng, & Yuan, 2011;
Min & Cheng, 2006; Mosheiov, 2001; Mosheiov & Yovel, 2006;
Ng, Cheng, Kovalyov, & Lam, 2003; Panwalkar, Smith, & Seidmann,
1982; Shabtay & Steiner, 2006). For state-of-the-art reviews of
scheduling models considering common due date assignment, as
well as practical applications of such models, the reader may refer
to Cheng and Gupta (1989), Gordon, Proth, and Chu (2002, 2010),
and Lauff and Werner (2004).

All of the above papers treat the delivery cost as either negligi-
ble or irrelevant. In other words, they focus on the machine sched-
uling problem, while ignoring the problem of scheduling the
deliveries of the finished jobs. However, delivery cost is a signifi-
cant cost element in production, whereby the production cost de-
pends not only on when jobs are processed but also when finished
jobs are delivered. Thus, as observed by Hermann and Lee (1993), a
realistic production scheduling model should include scheduling of
both job processing and job delivery. Several earlier papers have
considered scheduling models with both job processing and job
delivery. Cheng and Kahlbacher (1993) show that the batch deliv-
ery problem to minimize the sum of weighted earliness penalty
and delivery cost is NP-hard, while the case with equal weights
is polynomially solvable. Cheng and Gordon (1994) provide a
pseudopolynomial dynamic programming algorithm to solve the
problem and show that the case with identical processing times
is also polynomially solvable. Hermann and Lee (1993) study
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another batch delivery problem, where all the jobs have a given
restrictive common due date. The objective is to minimize the
sum of earliness penalty, tardiness penalty, and delivery cost. They
provide a pseudopolynomial dynamic programming algorithm to
solve the problem. Chen (1996) studies a variant of the problem
introduced by Hermann and Lee (1993) where the common due
date is not given but a decision variable to be determined, and
shows that the problem can be solved in O(n5) time. Both Hermann
and Lee (1993) and Chen (1996) assume that all the early jobs are
delivered on time to the customer without any cost, ignoring the
possibility that early jobs may be delivered in batches. Shabtay
(2010) addresses a single-machine scheduling problem similar to
the one studied by Hermann and Lee (1993), where each job is as-
signed a due date without restrictions. He applies the best delivery
strategy to all the jobs (not only to the tardy ones), includes the
earliness penalty in the objective function and considers the case
of acceptable lead-time. He shows that the problem is NP-hard
and presents a polynomial-time solution algorithm for two special
cases. Yin, Cheng, Hsu, and Wu (submitted for publication) study a
variant of the problem investigated by Chen (1996) by replacing
the common due date assumption with a common due window
assumption and by allowing the delivering of the early jobs in
more than one batch in the objective function. They show that
the problem can be optimally solved in O(n8) time and that some
special cases of the problem can be optimally solved by lower or-
der algorithms.

In this paper we extend the problem studied by Chen (1996) to
the cases where holding cost is included in the objective function
and an additional rate-modifying activity is allowed. This activity
requires a fixed time interval during which the machine is turned
off and production stops. On the other hand, after the rate-modify-
ing activity, the machine becomes more efficient, so the jobs pro-
cessed after the activity have shortened processing times.
Scheduling a rate-modifying activity becomes a popular topic
among researchers in the last decade. Lee and Leon (2001) study
several single-machine scheduling problems in this class to mini-
mize the makespan, flowtime, weighted flowtime, and maximum
lateness. Lodree and Geiger (2010) investigate scheduling with a
rate-modifying activity under the assumption that a job’s process-
ing time is time-dependent. For the sequence-independent, single-
machine makespan problem with position-dependent processing
times, they prove that under certain conditions, the optimal policy
is to schedule the rate-modifying activity in the middle of the job
sequence. Mosheiov and Sidney (2004) study the problems to min-
imize the makespan with precedence relations, the makespan with
learning effects, and the number of tardy jobs. Mosheiov and Oron
(2006) consider common due date assignment and single-machine
scheduling with the possibility of performing a rate-modifying
activity on the machine that changes the processing times of the
jobs scheduled after the activity. The objective is to minimize the
total weighted sum of earliness, tardiness, and due date cost. They
provide an (O(n4)) algorithm to solve the problem. Gordon and Tar-
asevich (2009) further address the problem studied in Mosheiov
and Oron (2006). They provide several properties of the problem,
which in some cases reduce the complexity of the solution algo-
rithm. Zhao, Tang, and Cheng (2009) consider parallel-machine
scheduling with rate-modifying activities. For the problem to min-
imize the total completion time, they provide a polynomial algo-
rithm to solve it. For the problem to minimize the weighted
completion time, they provide a pseudopolynomial dynamic pro-
gramming algorithm to solve the case where the jobs satisfy an
agreeable condition. Wang and Wang (2010) consider single-ma-
chine scheduling with assignable slack (SLK) due dates and a
rate-modifying activity to minimize the total earliness, tardiness,
and common flow allowance cost. They give a polynomial-time
solution for the problem. Yin, Cheng, Wu, and Cheng (submitted

for publication) study a problem similar to that studied in this pa-
per with a different objective of finding a common due date for all
the jobs, a location of the rate-modifying activity, and a delivery
date for each job to minimize the sum of earliness cost, weighted
number of tardy jobs, holding cost, due date penalty, and delivery
cost. Under the assumption that the earliness and holding costs are
proportional to their corresponding durations, they investigate the
structural properties of the optimal schedule of the problem and
present polynomial algorithms for three special cases.

Our problem considered in this paper includes scheduling deci-
sions on (i) the job sequence, (ii) the common due date, (iii) the
rate-modifying activity, and (iv) the delivery date for each job, so
as to minimize the sum of earliness, tardiness, holding cost, due
date, and delivery cost. The rest of the paper is organized as fol-
lows: In Section 2 we introduce and formulate the problem. In Sec-
tion 3 we provide some properties of the optimal schedule. In
Section 4 we develop polynomial algorithms for some special cases
of the problem. We conclude the paper and suggest some topics for
future research in the last section.

2. Model formulation

In this section we first introduce the notation to be used
throughout the paper, followed by formulation of the problem.

n The number of jobs (n P 2)
pj The processing time of job Jj

d The common due date to be
determined for all the jobs, i.e., dj = d

wj The modifying rate of job Jj

(0 < wj 6 1)
Cj The completion time of job Jj

Dj The delivery time of job Jj (Dj P Cj)
Ej = max{0,d � Dj} The earliness of job Jj

Tj = max{0,Dj � d} The tardiness of job Jj

Hj = Dj � Cj The holding time of job Jj, which is the
time between the moment the job
finishes its processing and the
moment it is delivered

a The unit cost of earliness
b The unit cost of tardiness
c The unit due date assignment cost
h The unit cost of holding a job
d The constant batch delivery cost

where j = 1, 2, . . . , n. In what follows, given any sequence S, we use
the subscript [j] to denote the job in position j of sequence S.

Assume that there is a set of independent jobs N = {J1, J2, . . . , Jn} to
be processed on a single machine. The machine can handle at most
one job at a time and job preemption is not allowed. All the jobs are
available for processing at time zero. The jobs are to be delivered in
batches to customers. We assume that there is no capacity limit on
each batch delivery and that the cost per delivery is fixed, i.e., the
cost is independent of the number of jobs delivered in a batch.
Hence, it may be beneficial to delay the shipping of a job until the
delivery time of the next job because the delay saves a delivery
charge. The scheduler also has an option to perform a rate-modify-
ing activity on the machine. The rate-modifying activity is denoted
by rm, and the starting time and the length of rm are denoted by srm

and t, respectively. When the machine is undergoing rm, no produc-
tion is possible. The processing time of job Jj is pj if the job is pro-
cessed prior to rm, and wjpj if it is scheduled after it, j = 1, 2, . . . , n.
The objective is to determine (i) the job sequence, (ii) the common
due date for all the jobs, (iii) the time (location) to schedule the
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