
Queueing analysis and optimal control of BMAP=Gða;bÞ=1=N
and BMAP=MSPða;bÞ=1=N systems

A.D. Banik *

School of Technology and Computer Science, Tata Institute of Fundamental Research, Homi Bhaba Road, Mumbai 400005, India

a r t i c l e i n f o

Article history:
Received 10 September 2008
Received in revised form 4 February 2009
Accepted 5 February 2009
Available online 13 February 2009

Keywords:
Finite-buffer
Queue
Batch Markovian arrival process
Markovian service process
General bulk service rule

a b s t r a c t

We first consider a finite-buffer single server queue where arrivals occur according to batch Markovian
arrival process ðBMAPÞ: The server serves customers in batches of maximum size ‘b’ with a minimum
threshold size ‘a’. The service time of each batch follows general distribution independent of each other
as well as the arrival process. We obtain queue length distributions at various epochs such as, pre-arrival,
arbitrary, departure, etc. Some important performance measures, like mean queue length, mean waiting
time, probability of blocking, etc. have been obtained. Total expected cost function per unit time is also
derived to determine the optimal value N� of N at a minimum cost for given values of a and b. Secondly,
we consider a finite-buffer single server queue where arrivals occur according to BMAP and service pro-
cess in this case follows a non-renewal one, namely, Markovian service process ðMSPÞ: Server serves cus-
tomers according to general bulk service rule as described above. We derive queue length distributions
and important performance measures as above. Such queueing systems find applications in the perfor-
mance analysis of communication, manufacturing and transportation systems.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Bulk service queues have received considerable attention due to
their wide applications in several areas including computer-com-
munication, telecommunication, transportation and manufactur-
ing systems. In many telecommunication systems, it is frequently
observed that the server processes the packets in groups of random
size. For example, in ATM networks with multiple input links
where each link may serve messages that consist of several pack-
ets. Besides applications in telecommunication systems, bulk ser-
vice queues have a wide range of applications in several areas
including transportation systems, automatic manufacturing sys-
tems, etc. Chaudhry and Templeton (1983), Dshalalow (1997),
etc. provide an extensive discussion of bulk-service systems. In
such queues customers are served by a single server in batches
of maximum size ‘b’ with a minimum threshold size ‘a’. Such type
of service rule is referred to as the general bulk service rule. In past
several authors have analyzed similar kind of model described
above, see e.g., Gold and Tran-Gia (1993), Chaudhry and Gupta
(1999), Hébuterne and Rosenberg (1999), Chakravarthy (1992), etc.

Queueing models with non-renewal arrivals and service pro-
cesses are often used to model such networks of complex com-
puter and communication systems. In such systems, both the
arrival and service processes may exhibit correlations which have

significant impact on queueing behaviour. Lucantoni, Meier-Hell-
stern, and Neuts (1990) used Markovian arrival process ðMAPÞ to
capture correlation among the successive inter-arrival times. Sim-
ilarly, to capture correlation among inter-batch arrival times
Lucantoni (1991) introduces batch Markovian arrival process
ðBMAPÞ, which is a convenient representation of Neuts (1979) ver-
satile Markovian point processes. Like the MAP, Markovian service
process ðMSPÞ is a versatile service process which can capture cor-
relation among successive service times. Several other service pro-
cesses such as Poisson, Markov modulated Poisson, and PH-type
renewal process can be considered as special cases of MSP. For
details of MSP readers are referred to Bocharov (1996), Albores-
Velasco and Tajonar-Sanabria (2004), Gupta and Banik (2007),
etc. More general non-renewal type of service process, e.g., semi-
Markov process ðSMÞ has been analyzed by several researcher.
For example, G=SM=1=1 queueing system with vacations was con-
sidered by Machihara (1999). Recently, some studies have been
done on departure process of MAP=MSP=1 type queueing systems,
e.g., see Zhang, Heindl, and Smirni (2005) and references therein. In
their paper, Zhang et al. (2005) have studied departure process of
BMAP=MAP=1 queue using exact aggregate solution technique
(called ETAQA truncation). Some studies of batch service queueing
systems with MAP arrival have been done in past, see e.g., Chakra-
varthy (1993), Gupta and Vijaya Laxmi (2001), etc. Very few stud-
ies have been found on the batch service queue with a non-renewal
service process, such as MSP. Recently, Banik, Chaudhry, and Gupta
(2008) have analyzed GI=BMSP=1=N queue in which service
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process BMSP refers to a variable batch-size service capacity rule.
In the corresponding section we discuss the difference between
BMSP and MSPða;bÞ service rule.

This paper first carry out the analytic analysis of the
BMAP=Gða;bÞ=1=N queue using the method of embedded Markov
chain and the argument of total probability. As stated earlier, the
service to the queueing system is provided in batches of minimum
size a and maximum bð1 6 a 6 b 6 NÞ: We obtain the steady-state
queue length distribution at departure, arbitrary and pre-arrival
epochs. Following that the construction of the expected cost func-
tion per unit time has been performed. An effective procedure is
developed for searching a suitable thresholds N� that minimizes
the cost function for given values of a and b. Secondly, we consider
BMAP=MSPða;bÞ=1=N queue and obtain queue length distributions at
departure, arbitrary and pre-arrival epochs. The queueing models
discussed in this paper is more general in the sense that several
other queueing models become special cases of the present one,
e.g., M½X�=Gða;bÞ=1=N; MAP=PHða;bÞ=1=N, PH½X�=PHða;bÞ=1=N, etc.

This paper is organized as follows. Section 2 and its subsections
analyze queueing model BMAP=Gða;bÞ=1=N elaborately. Section 3
and its subsections present analytic analysis of the queueing model
BMAP=MSPða;bÞ=1=N. Section 4 presents numerical results in the
form of graphs.

2. Description and analysis of BMAP=Gða;bÞ=1=N queue

Let us consider a single server finite-buffer queue where input
process is BMAP and service times are generally distributed and
independent of the arrival process, whereas N is the capacity of
the queue excluding those who are in service. The service takes
place in batches of maximum size b with a minimum threshold
equal to að1 6 a 6 b 6 NÞ. However, if fewer than aðP 1Þ custom-
ers are present in the queue, the server waits till the number of
customers in the queue reaches a and then initiates service for that
group of customers. The arrival process BMAP is characterized by
m�m matrices Dk; k P 0 where ði; jÞth ð1 6 i; j 6 m; i–jÞ element
of D0, is the state transition rate from state i to state j in the under-
lying Markov chain without an arrival and ði; jÞth ð1 6 i; j 6 mÞ ele-
ment of Dk; k P 1, is the state transition rate from state i to state j
in the underlying Markov chain with an arrival of batch size k. The
matrix D0 has nonnegative off-diagonal and negative diagonal ele-
ments, and the matrix Dk; k P 1; has nonnegative elements. The
negative of diagonal elements, i.e., ði; iÞth ð1 6 i 6 mÞ element of
D0 represents the mean rate of exponential sojourn time in state
i. Let NðtÞ denote the number of arrivals in ½ð0; tÞ� and JðtÞ be the
state of the underlying Markov chain at time t with state space
fi : 1 6 i 6 mg. Then fNðtÞ; JðtÞg is a two-dimensional Markov pro-
cess of BMAP with state space fðn; iÞ : n P 0;1 6 i 6 mg. The infin-
itesimal generator of BMAP is given by

Q ¼

D0 D1 D2 D3 � � �
0 D0 D1 D2 � � �
0 0 D0 D1 � � �
..
. ..

. ..
. ..

. . .
.

0BBBB@
1CCCCA:

As Q is the infinitesimal generator of the BMAP, we haveP1
k¼0Dkem ¼ 0, where em is a m� 1 vector with all its elements

equal to 1. Throughout the paper we sometimes do not use the sub-
script m and write it as e. However, when e’s dimension is other
than m we write its subscript as its dimension. Further, since
D ¼

P1
k¼0Dk is the infinitesimal generator of the underlying Markov

chain fJðtÞg, there exists a stationary probability vector �p such that
�pD ¼ 0; �pe ¼ 1. Then the average arrival rate k� and average batch
arrival rate kg of the stationary BMAP are given by k� ¼ �p

P1
k¼1kDke

and kg ¼ �p
P1

k¼1Dke ¼ �pD01e, respectively, where D0n ¼
P1

i¼nDi. Let

us define fPðn; tÞ;n P 0; t P 0g as m�m matrix whose ði; jÞth ele-
ment is the conditional probability defined as

Pijðn; tÞ ¼ PrfNðtÞ ¼ n; JðtÞ ¼ jjNð0Þ ¼ 0; Jð0Þ ¼ ig:

These matrices satisfy the following system of difference-differen-
tial equations

d
dt

Pð0; tÞ ¼ Pð0; tÞD0; ð1Þ

d
dt

Pðn; tÞ ¼
Xn

i¼0

Pði; tÞDn�i; n P 1; ð2Þ

with Pð0;0Þ ¼ Im, where Im is the identity matrix of dimension m.
Usually we write this matrix as I when its dimension is equal to
m else we write I’s dimension in its subscript. Let us define matrix
generating function P�ðz; tÞ as

P�ðz; tÞ ¼
X1
n¼0

Pðn; tÞzn; jzj 6 1; ð3Þ

From (1)–(3), we have

d
dt

P�ðz; tÞ ¼ P�ðz; tÞ
X1
i¼0

Dizi; ð4Þ

d
dt

P�ðz; 0Þ ¼ Im: ð5Þ

Solving the above matrix-differential equations, we get

P�ðz; tÞ ¼ eDðzÞt; jzj 6 1; t P 0; ð6Þ

where DðzÞ ¼
P1

i¼0Dizi.
Since we deal with finite-buffer queue with batch arrival, one

may consider different batch acceptance/rejection strategies when
buffer is going to be full and a batch arrives for service. Batches
upon arrival find not enough space in the buffer are, either fully re-
jected, or a part of the batch is rejected. Some queueing protocol
are based on the former strategy and it is known as total batch
rejection policy. Latter one is known as the partial batch rejection
policy. Here we consider partial batch rejection policy, i.e., if an
arriving batch finds not enough space in the buffer, some of the
customers of that batch are accepted till the buffer is full, and rests
are rejected. In case of partial batch rejection strategy and finite-
buffer capacity let us define fPðn; tÞð0 6 n 6 N; t P 0Þg as m�m
matrix whose ði; jÞth element is the probability to admit n custom-
ers in the system during the time interval ½ð0; tÞ� and to have the
state j of the underlying Markov chain of the BMAPJðtÞ at the epoch
t conditional that the state of this process was i at the epoch 0. The
matrices Pðn; tÞ satisfy following system of difference-differential
equations:

Pð1Þðn; tÞ ¼
Xn

k¼0

Pðk; tÞDn�k; 0 6 n 6 N � 1; ð7Þ

Pð1ÞðN; tÞ ¼
XN

k¼0

Pðk; tÞD0N�k; ð8Þ

with Pð0;0Þ ¼ Im for the above three cases and Pð1Þðn; tÞ ¼ d
dt Pðn; tÞ.

The service times S of batches are independent identically dis-
tributed (i.i.d.) random variables (r.v.’s) with probability distribu-
tion function SðxÞ, density function sðxÞðx P 0Þ and mean service
time EðSÞ. Let q be the traffic intensity, then q ¼ k�EðSÞ=b.

2.1. Queue length distribution at departure epoch

Consider the system at a service completion instant of a
batch. Let t0; t1; t2; . . . be the time epochs at which service com-
pletion of a batch occurs. Let tþi denotes the time epoch just after
a service completion epoch of a batch. The state of the system at
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