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a b s t r a c t

This work identifies a link between on-line statistical process control (SPC) and the learning effect for the
process standard deviation (PSD) caused by the quality improvement (QI) program. The learning curve
(LC) is used to describe and forecast, and the exponentially weighted root mean square control chart is
used to monitor the progress in reducing PSD. A modification of the quality control chart (QCC) that con-
siders LC of PSD is proposed. The reduction rate of PSD may be large during the initial stage of the QI pro-
gram, and influences QCC construction. Simulation is used to compare the shift-detecting ability of the
Shewhart-X control chart and EWMA-X control chart, without- and with- consideration of LC. The
EWMA-X chart with consideration of LC performs best. In comparison, the Shewhart-X chart without
LC consideration has almost no shift-detecting ability when the shift magnitude of the process mean is
small, leading to rendering quality control ineffective.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

During the mid-1980s, quality improvement (QI) became an
important issue for numerous companies. Currently, many organi-
zations are still using the principles and concepts of Total Quality
Management, Continuous Improvement, Six-Sigma, etc. to improve
quality. Numerous QI programs are based on an administrative
structure that implements statistical methods. For example, Six-
Sigma is based on the understanding and eliminating causes of var-
iation may simply involve a collection of old well-tried statistical
process control (SPC) tools and techniques, but the modern ap-
proach has been carefully and professionally adopted by many
companies. This approach is now well recognized as an effective
method of achieving excellent product and service quality (see
Hahn, Doganaksoy, & Hoerl, 2000; Hoerl, 1998).

Some of those QI programs focus on reducing variability in
quality characteristics (such as the process standard deviation,
PSD) within a specific period. Such as mentioned in Guiffrida and
Nagi (2006), the delivery variance in supply chain can be reduced
with the context of a continuous improvement program. If an aver-
age four sigma (or 6210 defects per million opportunities (DPMO))
company plans to achieve Six-Sigma (or 3.4 DPMO) over a 5 years
period (i.e. 60 months) of Six-Sigma deployment, it involves an

11.77% monthly improvement rate. It means that, if di denotes
the ith month’s DPMO after implementing the QI program,
di = 6210 DPMO � (1 � 0.1177)i, i = 1, 2, . . . , 60, then the 60th
month’s DPMO, d60 = 6210 DPMO � (1�0.1177)60 = 3.4 DPMO. To
reach the target level, the learning curve (LC) can be used to mon-
itor and forecast the rate of reduction of PSD.

LCs have been extensively studied, starting with Wright in
1936, and have been applied in practice (Yelle, 1979). LC provides
a method of quantifying, observing and predicting ongoing
improvements in manufacturing and service organizations.
Numerous scientists and practitioners have observed the strategic
importance of LC (Fine, 1986; Jaber, 2006a; Jaber & Bonney, 2003.)
The central notion in LC theory is that accumulating experience
leads to improved performance, or learning by doing (e.g., Jaber,
2006b). Tapiero (1987) established a linkage between quality con-
trol and the learning process involved in production. The author
concluded that experience and high quality control move together
are correlated through conventional wisdom and more elaboration.
Lapre, Mukherjee, and Van Wassenhove (2000) studied the relation
between waste rates and quality-based learning. They indicated
that waste reduction is a function of the number of QI projects with
high conceptual and high operational learning, rather than the to-
tal number of improvement projects. Based on detailed data on de-
fect rates and quality cost of the plants, Ittner, Nagar, and Rajan
(2001) found that learning is a function of both proactive invest-
ments in quality improvement and autonomous learning-by-
doing. In this study, we emphasize the learning which comes from
quality improvement program, such as Total Quality Management,
Continuous Improvement, Six-Sigma, etc. The result of Ittner et al.
(2001) is included for supporting this exposition.
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Serel, Dada, Moskowitz, and Plante (2003) noted that investing
in reducing process variation is generally more beneficial than
reducing the bias between the process mean and the target quality
characteristic value. Jaber and Guiffrida (2004) considered learning
in production and reworks. They found three behavioral patterns in
the quality learning curve: concave, plateau, and monotonically
decreasing. Jaber and Guiffrida (2008) investigated the quality
learning curve for the assumption that the production process is
interrupted for quality maintenance to bring the process in-control
again. They showed that the plateauing effect, which could be be-
cause of quality problems, can be broken by continuous improve-
ment programs. In this study, we assume that the QI program
focuses on the learning strategy that reduces the PSD of the quality
characteristic, and helps increase system performance to achieve
pre-determined targets.

The quality control chart (QCC), as a major technique of the on-
line SPC, monitors the stability of a process and detects unstable
factors. An out-of-control signal indicates the existence of a shift
of the mean or variance of the process (caused by the assignable
causes) is indicated. The process engineer stops the production
line, identifies and eliminates the assignable causes, and restarts
production. This process investigation and adjustment is similar
with the minor setup mentioned in Khouja (2005). Khouja (2005)
reformulated some inventory models which allow for adjustments
to restore the process to an ‘‘in-control” state. These adjustments
were performed without interrupting the system or may require
system stoppage and can be thought of as ‘‘minor setups”. In this
study, we assume that the reduction rate of PSD is not affected
after the process adjustment.

As mentioned in Montgomery (2005, p. 168), control chart
usage generally involves two distinct phases. In phase I, a set of
process data is gathered and analyzed for constructing trial control
limits and assist operating personnel in bringing the process into a
state of statistical control. In phase II, we usually assume that the
process is reasonably stable and the major objective of QCC is on
process monitoring. Therefore, people generally assume constant
PSD, and simply modify the control chart following an extended
period until the change in PSD (decrease) is detected based on
the gathered data. In the modern high-technology age, some prod-
ucts have extremely short life-cycles (for example only 9 months),
and can be manufactured during the early stage of LC. Further-
more, the reduction rate of PSD combined with the QI program is
extremely large. Thus without LC consideration, the control limits
of QCC are too wide to detect the process shift efficiently during
the earlier stage of the QI program.

This study proposes a quality control scheme which establishes
a link between on-line SPC and the LC of PSD. To the best of our
knowledge, this is the first paper which employs the LC for on-line
quality control scheme. The originality and contribution of this pa-
per are doubtless. The quality control scheme considers the LC dur-
ing the QI program, to maintain appropriate quality control limits
and more quickly detect the shift of the process mean. There are
various LCs proposed in the literature, such as the exponential LC
(e.g., Serel et al., 2003; Zangwill & Kantor, 1998) and the power
LC (e.g., Jaber & Bonney, 2003). In this study, an exponential LC
model is applied to establish a PSD forecasting model. Any kind
of LC can be applied in our proposed quality control scheme. An
exponentially weighted root mean square (EWRMS) control chart
is then used to monitor the predicted PSD. The improvement infor-
mation of PSD influences the construction of the QCC.

In the quality control literature (e.g., Saccucci & Lucas, 1990),
when designing a control chart for monitoring the process mean,
people usually assume the process variance to be constant (in-con-
trol). Under the same PSD and pre-determined in-control average
run length (ARL0), with various shifts of the process mean, we
can compare the shift-detecting ability of the control charts by

out-of-control average run length (ARL1). If the variation source
of PSD also comes from the process shift (out-of-control), the mea-
surement of ARL1 should be made under both various shifts of the
process mean and PSD. It will make the comparison of shift-detect-
ing ability of the control chart more complicate and difficult. In this
work, for simplification, we assume that the only variance source
of PSD comes from the learning effect. The only variation which
contributes to the process is the process mean. Then the sample
mean (X) control charts (such as the Shewhart-X control chart
and the exponentially weighted moving average (EWMA)-X con-
trol chart) are adopted for monitoring the process mean of the
quality characteristics.

The remainder of this paper is organized as follows. Section 2
uses an exponential learning model to forecast PSD, and uses an
EWRMS control chart to monitor PSD. In Section 3 then briefly de-
scribes the EWMA-X chart. When the smoothing parameter, k ¼ 1,
the EWMA-X chart reduces to the Shewhart-X chart. Section 4 pre-
sents a simple example for illustration. In Section 5, the perfor-
mance of the EWMA-X chart and the Shewhart-X chart, with-
and without- LC consideration, and under various shifts of process
mean, are compared in terms of average run length (ARL). The rel-
ative data are obtained via numerical simulation. Finally, the last
section presents conclusions.

2. PSD learning model and the EWRMS control chart

Let Xi denote the value of interested quality characteristic. Sup-
pose that Xi is a variable and comes from a normal Nðli;r2

i Þ distri-
bution, where i ¼ 1;2; . . ., represents the cumulative production
quantity following implementing QI program, li is the process
mean, and r2

i denotes the process variance (that is ri is the value
of PSD). To study the PSD, this work collects the information during
the setting-up phase (phase I) to yield a preliminary estimate of
the asymptotic performance of a manufacturing process (as noted
in Franceschini, 2002). The exponential LC in the stable state
(phase II) is assumed to be adequate in this study:

ri ¼ r0e�bi þ e; b > 0; i ¼ 1;2; . . . ð1Þ

where r0 denotes the initial level of PDS, b represents the learning
rate, and e is the random error term (e � NIDð0;r2

e Þ). Eq. (1) implies
that the PSD, ri, decreases at a decreasing rate with increasing i. The
Gauss–Newton iteration method (Bates & Watts, 1988) can be used
to estimate the parameters in Eq. (1). To predict the process vari-
ance at a future cumulative production quantity i following imple-
menting QI program, the following model is used:

r̂i ¼ r0e�b̂i: ð2Þ

If G* is the ideal PSD performance after producing T items (that is
rT ¼ G� ¼ r0e�b̂T ), the learning rate b̂ can be obtained as

b̂ ¼ 1
T

lnðr0=G�Þ: ð3Þ

For instance, if the company plans to decrease ri from r0 = 2 (at the
beginning of the QI, i = 0) to r10,000 = G* = 1 (at the end of the QI,
i = T = 10,000), the learning rate will be b̂ ¼ 0:000069314:

Suppose that samples are obtained at each point in time. Let n
denote the size of rational subgroups (n > 1), while m represents
the items that are produced between subgroups, and Xi = Xj,k is
the value of the quality characteristic in the jth subgroup,
j ¼ 1;2; . . . ; k ¼ 1;2; . . . ;n. For simplicity, we assume that
Xj;k � NðlðjÞ;r2

ðjÞÞ. It means that, within the subgroup (say j), Xj;k

has the same mean (denoted as l(j)) and the same PSD (denoted
as r(j)). Moreover, r(j) is set to be the PSD value of the middle
observation of the jth subgroup. Hence, according to Eq. (1), r(j)

is defined as follows:
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