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a b s t r a c t

Petri nets based deadlock prevention for flexible manufacturing systems has received much attention
over the past decade, primarily due to the seminal work of Ezpeleta et al. in 1995. A Petri net based dead-
lock prevention mechanism is usually implemented by adding monitors or control places to a plant Petri
net model such that liveness can be enforced. The significance of this methodology lies in that both a
plant model and its supervisor are in a same formalism-Petri nets. Due to the inherent complexity of Petri
nets, in theory, the number of additional monitors that have to been added to achieve liveness-enforce-
ment purpose for an uncontrolled plant model is exponential with respect to the size of the model. This
paper first proposes a systematic method to minimize the number of additional monitors in a liveness-
enforcing Petri net supervisor such that the resultant net system has the same permissive behavior while
liveness can still be preserved. Furthermore, for the liveness-enforcing Petri net supervisors of flexible
manufacturing systems, which have some particular property, an algorithm is developed such that more
permissive liveness-enforcing Petri net supervisors can be obtained after liveness-restrictive monitor
removal. Compared with the existing techniques of eliminating redundant monitors in the literature,
the complete state enumeration of a supervisor is avoided, which implies the high computational effi-
ciency of the methods in this paper. Flexible manufacturing examples are used to demonstrate the pro-
posed approaches.

� 2008 Published by Elsevier Ltd.

1. Introduction

In a flexible manufacturing system (FMS), different types of raw
parts enter the system at discrete points of time and are processed
concurrently, sharing a limited number of resources such as ma-
chine tools, AGVs, robots, buffers, and fixtures. In such a system,
every raw part follows a preestablished production sequence
through the set of system resources. These production sequences
are executed concurrently and therefore they have to compete
for the set of shared resources. This competition for shared re-
sources can cause deadlocks that are a highly undesirable situa-
tion, where each of a set of two or more jobs keeps waiting
indefinitely for the other jobs in the set to release resources
(Viswanadham, Narahari, & Johnson, 1990).

Deadlocks and related blocking phenomena often cause
unnecessary costs. Therefore, it is a necessary requirement to de-
velop a way to make sure that deadlocks will never occur in a
system. Modeling an FMS with Petri nets (Murata, 1989;Zhou
& Venkatesh, 1998) is such a way of dealing with deadlock prob-
lems. Three major strategies using Petri net techniques to cope

with deadlocks in FMS are deadlock detection and recovery
(Kumaran, Chang, Chao, & Wysk, 1994;Wysk, Yang, & Joshi,
1994), deadlock avoidance (Abdallah & ElMaraghy, 1998;Banas-
zak & Krogh, 1990;Barkaoui & Abdallah, 1994;Ezpeleta, Tricas,
García-Vallés, & Colom, 2002;Ezpeleta & Recalde, 2004;Hsien &
Chang, 1994;Park & Reveliotis, 2001;Viswanadham et al., 1990),
and deadlock prevention that is a well-defined problem in
discrete event systems (DES). Petri nets have been used widely
to describe, analyze, and control FMS (Zhou & Venkatesh,
1998), as they are well suited to represent FMS characteristics
such as precedence relations, concurrency, conflict and
synchronization.

Deadlock prevention is usually achieved either by effective sys-
tem design (Jeng & Xie, 1999;Jeng, Xie, & Peng, 2002;Xie & Jeng,
1999;Zhou & DiCesare, 1991;Zhou & Venkatesh, 1998) via limiting
the number of raw products into a system or by using an off-line
mechanism to control the requests for resources to ensure that
deadlocks never occur. The former, however, often degrades the
performance of a system since more permissive behavior is re-
stricted. The latter, in general, largely due to the seminal work of
Ezpeleta, Colom, and Martinez (1995), uses monitors (control
places) and related arcs to achieve deadlock prevention purposes
(Abdallah & ElMaraghy, 1998;Barkaoui & Abdallah, 1995;Barkaoui
et al., 1997;Ezpeleta et al., 1995;Ghaffari, Nidhal, & Xie,;Huang,

0360-8352/$ - see front matter � 2008 Published by Elsevier Ltd.
doi:10.1016/j.cie.2008.03.013

q This manuscript was processed by Area Editor Gunsel A. Suer.
* Corresponding author.

E-mail address: zhwli@xidian.edu.cn (Z. Li).

Computers & Industrial Engineering 56 (2009) 53–62

Contents lists available at ScienceDirect

Computers & Industrial Engineering

journal homepage: www.elsevier .com/ locate/caie

mailto:zhwli@xidian.edu.cn
http://www.sciencedirect.com/science/journal/03608352
http://www.elsevier.com/locate/caie


Jeng, Xie, & Chung, 2001;Huang, Jeng, Xie, & Chung, 2006;Iordache,
Moody, & Antsaklis, 2002;Li & Zhou, 2004;Li & Zhou, 2006;Li &
Zhou, 2008;Tricas, Valles, Colom, & Ezpeleta, 1998;Uzam,
2002;Xing, Hu, & Chen, 1996). The work of Ezpeleta et al. (1995)
is usually considered to be the first using structure theory of Petri
nets to design monitor-based liveness-enforcing Petri net supervi-
sors for FMS. Ezpeleta et al. (1995) defined a subclass of ordinary
and conservative Petri nets called Systems of Simple Sequential
Processes with Resources (S3PR) and required the target Petri net
to be in that subclass. A monitor is added for every strict minimal
siphon such that liveness can be enforced. However, too many
monitors and arcs have to be added, leading to a much more com-
plex Petri net supervisor than the originally built Petri net model.
This is not surprising since the number of siphons that need to
be controlled grows quickly and in the worse case is exponential
with respect to the size of a plant net model (Ezpeleta, Couvreur,
& Silva, 1993;Lautenbach, 1987). Furthermore, the behavior of
the system is much restrictive. This particular research is moti-
vated by the urgent need to explore an effective and computation-
ally efficient way that systematically eliminates redundant
monitors such that the structural complexity of the liveness-
enforcing Petri net supervisors computed by the existing deadlock
prevention policies in the literature can be reduced while liveness
is preserved.

The importance of designing structurally simple Petri net
supervisors for FMS is well recognized in recent years (Li &
Zhou, 2004;Li & Zhou, 2008;Li, Hu, & Wang, 2007). Uzam, Li,
and Zhou (2007) proposed a methodology to identify and elim-
inate redundant control places in a Petri net supervisor of an
FMS. Generally speaking, it can minimize the number of addi-
tional monitors in a supervisor. However, it suffers from much
computational cost since generating the reachability set of
markings of a system is the first step of the methodology. Tra-
ditional ‘‘explicit” algorithms that explore the reachability graph
of a Petri net require memory and time at least proportional to
the number of reachable markings, thus they are applicable
only to fairly small systems. In practice, we are limited to hop-
ing that a plant net model is not only small-sized, but also
with small initial markings such that its reachability set is
small enough to fit in the memory of our computers. Such a
brute-force approach makes nevertheless sense, but, from both
practical and theoretical points of view, research efforts should
be directed at finding more efficient redundant monitor re-
moval algorithms that avoid to generate and store the reach-
ability set.

Fortunately, there is an established tool inside Petri net the-
ory, which can be used to remove redundant monitors from a
liveness-enforcing Petri net supervisor. It is implicit places (Gar-
cia-Vallés & Colom, 1999;Recalde, Teruel, & Silva, 1997). Implicit
places are a kind of places with the property that their addition
to or removal from a net system does not change its behavior,
i.e., an implicit place is an redundancy. This paper first utilizes
this tool to develop a method to remove implicit monitors in a
liveness-enforcing Petri net supervisor. Then, motivated by the
observation that some monitors’ removal can lead to more per-
missive behavior as well as liveness preservation,1 we also pro-
pose an algorithm to eliminate them from liveness-enforcing net
supervisors. This algorithm can also eliminate implicit places that
cannot be removed by the first proposed method. It is done by
using a mixed integer programming based approach that is well
established by Chu and Xie (1997).

The remainder of the paper is organized as follows. Basics of
Petri nets and the concept of implicit places are briefly reviewed
in Section 2. Section 3 develops a method to systematically remove
the redundant (implicit) monitors from a liveness-enforcing Petri
net supervisor. In Section 4, we propose an algorithm that can
eliminate implicit and liveness-restrictive monitors whose re-
moval may lead to a more permissive supervisor with liveness
preservation. FMS examples are used to demonstrate the proposed
methods throughout Section 4. Some interesting problems are dis-
cussed in Section 5 that is mainly concerned with the size of struc-
turally optimal liveness-enforcing supervisors and the
computational complexity of the proposed algorithms. Finally, Sec-
tion 6 concludes this paper.

2. Preliminaries

2.1. Basics of Petri nets

A (general) Petri net (Murata, 1989;Zhou & Venkatesh, 1998) N
is a 4-tuple ðP; T; F;WÞwhere P and T are finite, nonempty, and dis-
joint sets. P is the set of places and T is the set of transitions with
P [ T–; and P \ T ¼ ;. F # ðP � TÞ [ ðT � PÞ is called flow relation of
the net, represented by arcs with arrows from places to transitions
or from transitions to places. W : F ! Nþ is a mapping that assigns
a weight to an arc, where Nþ ¼ f1;2; � � �g. N ¼ ðP; T; F;WÞ is called
an ordinary net, denoted as N ¼ ðP; T; FÞ, if 8f 2 F, Wðf Þ ¼ 1. A
marking M of N is a mapping from P to IN, where
IN ¼ f0;1;2; � � �g. A net is self-loop free iff 9= x; y 2 P [ T; f ðx; yÞ 2
F ^ f ðy; xÞ 2 F. The pre-incidence matrix Pre: P � T ! IN of N is
Preðp; tÞ ¼Wðp; tÞ. The post-incidence matrix Post: P � T ! IN of
N is Postðp; tÞ ¼Wðt; pÞ. A self-loop free Petri net N ¼ ðP; T; F;WÞ
can be alternatively represented by its flow matrix or incidence
matrix ½N�, where ½N� is a jPj � jTj integer matrix with ½N�ðp; tÞ ¼
Postðp; tÞ � Preðp; tÞ. Let A be any one of ½N�, Pre, and Post. Aða; bÞ
is used to denote the sub-matrix of A corresponding to rows of
places in a # P and columns of transitions in b # T.

Let N ¼ ðP; T; F;WÞ be a net. The preset of a node x 2 P [ T is de-
fined as �x ¼ fy 2 P [ Tjðy; xÞ 2 Fg. While the postset of a node
x 2 P [ T is defined as x� ¼ fy 2 P [ Tjðx; yÞ 2 Fg. This notation can
be extended to a set of nodes as follows: Given X # P [ T; �X ¼
[x2Xð�xÞ, and X� ¼ [x2Xðx�Þ. MðpÞ indicates the number of tokens
contained in place p. p is marked by M iff MðpÞ > 0. A subset
D # P is marked by M iff at least one place in D is marked by M.
The sum of tokens in all places in D is denoted by MðDÞ where
MðDÞ ¼

P
p2DMðpÞ.

A transition t 2 T is enabled at a marking M iff 8p2�t,
MðpÞP Wðp; tÞ; this fact is denoted as M½ti; when fired in a
usual way, this gives a new marking M0 such that 8p 2 P,
M0ðpÞ ¼ MðpÞ �Wðp; tÞ þWðt; pÞ; it is denoted as M½tiM0. Mark-
ing M0 is said to be reachable from M if there exists a sequence
of transitions r ¼ t0t1 � � � tn and markings M1;M2; � � �, and Mn

such that M½t0iM1½t1iM2 � � �Mn½tniM0 holds. The set of markings
reachable from M in N is denoted as RðN;MÞ. The set of all
the occurrence sequences, or language, from M is denoted by
LðN;MÞ.

A transition t 2 T is live under M0 iff 8M 2 RðN;M0Þ,
9M0 2 RðN;MÞ, M0 ½ti. N is dead under M0 iff 9= t 2 T , M0½ti holds.
ðN;M0Þ is deadlock-free iff 8M 2 RðN;M0Þ, 9t 2 T , M½ti holds.
ðN;M0Þ is live iff 8t 2 T , t is live under M0. ðN;M0Þ is bounded iff
9k 2 IN, 8M 2 RðN;M0Þ, 8p 2 P, MðpÞ 6 k holds.

A P-vector is a column vector I : P ! Z indexed by P and a T-vec-
tor is a column vector J : T ! Z indexed by T, where Z is the set of
integers. IT and ½N�T are the transposed versions of a vector I and
matrix ½N�, respectively. P-vector I is a P-invariant (place invariant)
iff I–0 and IT ½N� ¼ 0T .

1 A monitor with this property is called a liveness-restrictive place that is defined in
Section 4.
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