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a b s t r a c t

In this paper, we propose a (max,+)-based method for the supervision of discrete event systems subject to
tight time constraints. Systems under consideration are those modeled as timed event graphs and repre-
sented with linear (max,+) state equations. The supervision is addressed by looking for solutions of con-
strained state equations associated with timed event graph models. These constrained state equations are
derived by reducing duration constraints to elementary constraints whose contributions are injected in
the system’s state equations. An example for supervisor synthesis is given for an industrial manufacturing
plant subject to a strict temporal constraint, the thermal treatment of rubber parts for the automotive
industries. Supervisors are calculated and classified according to their performance, considering their
impact on the production throughput.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Discrete Event Systems (DES) are of great interest in research
activities dedicated to industrial production systems. Many ap-
proaches have been proposed for the analysis of DES these last
few decades (see Cassandras & Lafortune, 1992 among others).
Some are related to computational simulations (Law & Kelton,
1991), and others are based on the (max,+)-algebra (Baccelli,
Cohen, Olsder, & Quadrat, 1992; Gaubert, 1992). Under some
assumptions, DES can be modeled as Timed Event Graphs (TEGs)
(Gaubert, 1992; Murata, 1989) and thus, the analysis of the system
can be described with linear equations in (max,+)-algebra.

This work concerns the supervision of DES, modeled as TEGs,
and assumed to respect strict temporal constraints for specific pro-
cessing. The supervision is aimed at guaranteeing the respect of
temporal constraints without impacting significantly the dynamic
behavior of the system. Similar problems of meeting time con-
straints have been recently addressed via different approaches
(Amari, Loiseau, & Demongodin, 2005; Houssin, Lahaye, &
Boimond, 2007; Kim & Lee, 2003; Ouerghi & Hardouin, 2006;
Spacek, Manier, & Moudni, 1999). We propose solutions based on

a constrained (max,+) state equation for the TEG model of the
DES. Constrained state equations are obtained by reducing tempo-
ral constraints to elementary constraints and by injecting contribu-
tions of these elementary constraints in the state equation of the
TEG models. These elementary constraint equations derive from
a simplified representation of the TEG under consideration, repre-
sentation which consists in decomposing a place with a number m
of tokens into m places, each one containing only one token.

The method proposed in this paper is used to synthesize super-
visors for an industrial manufacturing plant subject to a strict tem-
poral constraint. Supervisors are calculated and classified
according to their performance. The performance evaluation is of
great interest in the literature on the topic of (max,+) algebra
(Baccelli et al., 1992; Cohen, Moller, Quadrat, & Viot, 1985;
Gaubert, 1992). The performance of a supervisor is measured
according to the maximum throughput of the plant. According to
this particular performance measure, we can classify the supervi-
sors between those which slow down the production throughput
and those which preserve this production rate. The cycle time of
such a plant modeled as a TEG corresponds to the eigenvalue of
the matrix associated with its graph (Baccelli et al., 1992; Cohen,
Dubois, Quadrat, & Viot, 1983; Gaubert, 1995); the production
throughput is the inverse of the cycle time.

This work is organized as follows. Section 2 recalls basics on
(max,+) theory and provides a description of the dynamic behavior
of TEGs according to linear (max,+) models. Section 3 first presents
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the integration of temporal constraints in this linear model. Then,
the supervision problem is addressed and methods are provided
for supervisor synthesis. A first case study is discussed for the
supervision of a constrained system. A second example is provided
for the control a single armed robot in a cluster-tool for the semi-
conductor industry. Section 4 discusses the supervision of an
industrial plant. The supervision is aimed at guaranteeing the re-
spect of a strict duration constraint for a heating process without
impacting significantly the production rate of the manufacturing
unit. In this section, we show that the supervision can be per-
formed thanks to the analytical technique described in Section 3
and provide supervisors that allow for preserving the production
rate of the industrial plant. Finally, Section 5 gives a conclusion
and addresses perspectives to extend this work.

2. TEG and linear (max,+) models

2.1. (max,+) algebra

This section briefly recalls the fundamentals of (max,+) algebra,
which is largely used for the analysis of DES. Further details about
this theory can be found in Gondran and Minoux (1977), Cohen,
Dubois, Quadrat, and Viot (1985), Gaubert (1992), Cohen (1994),
Libeaut (1996) among others. Some specific results that are essen-
tials to state on the existence of a solution to the problem tackled
here are therefore given at the end of the section. In what follows,
D denotes a set.

Definition 1 (Monoid). A monoid is an algebraic set with an
associative internal operation and an identity element.

Definition 2 (Semiring). ðD;�;�Þ is a semiring if:

� ðD;�Þ is a commutative monoid. Its identity element is denoted
by � (null element).
� ðD;�Þ is a monoid. Its identity element is denoted by e (unit

element).
� Multiplication � distributes over addition and � annihilates D

(every x 2 D is such that x � � = � � x = �).

Definition 3 (Dioid). A dioid ðD;�;�Þ is an idempotent semiring
(every x 2 D is such that x � x = x).

Hereafter, the product a � b will be denoted a.b or ab when
there is no possible confusion.

Example 1 (Examples of dioids).

� Let R be the set of real numbers. ðR [ f�1g;max;þÞ is a com-
mutative dioid for which � = �1 and e = 0. This dioid is denoted
by Rmax and is called (max,+) algebra.
� Let ðD;�;�Þ be a dioid and Dn�n the set of square matrices of

order n over D. ðDn�n;�;�Þ is a dioid called a matrix dioid.
The sum and the matrix product are defined as follows: if
A = (Aij), B = (Bij), then (A � B)ij = Aij � Bij and ðA� BÞij ¼ �n

k¼1

Aik � Bkj. The null element of the matrix dioid is the matrix com-
posed of �. The unit matrix is the matrix with e on the main
diagonal and � elsewhere.

Definition 4 (Moduloid). Let D be a dioid. A moduloidM over D is
a monoid ðM;�Þ, endowed with an external operation ‘‘.’’
D�M!M, such that for all k;l 2 D and for all u;v 2M:

1. (k � l).u = k.u � l.v
2. (k.l).u = k.(l.u)
3. k(u � v) = k.u � k.v
4. �.u = �
5. e.u = u

Example 2 (Examples of moduloids). The set Dn of n dimensional
vectors over a dioid D is a moduloid over D. In the same way,
the set of Dn�m matrices over a dioid D is a moduloid over D.

In the rest of the paper (especially in Section 3), we consider the
moduloid Rn�m

max defined over the dioid Rmax.
Let ðD;�;�Þ be a dioid. The idempotency of the operation �

induces over D, an order structure denoted � and defined by:
x � y, x � y = y. This order relation is compatible with the
operations � and � (proof in Baccelli et al. (1992)). In (max,+)
algebra, this order coincides with usual order 6. The lower (^)
and upper (_) bounds are defined by: x � y, x � y = y
, x ^ y = x, x _ y = y = x � y.

Definition 5 (Completeness in dioids). A dioid ðD;�;�Þ is complete
if

8c 2 D;8A #D; c � ð�
x2A

xÞ ¼ �
x2A

c � x;

that is if it is closed for infinite sums and if the operation � distrib-
utes over infinite sums.

A complete dioid D is upper bounded by an element, denoted T,
defined by:

T ¼ �x2Dx:

This element annihilates ðD;�Þ, that is T � x = T for all x 2 D, and
this element also verifies: T � � = �.

Note that dioid Rmax is not complete. Rmax [ fþ1gwith the con-
vention: (�1) � (+1) = (+1) � (�1) = �1 is a complete dioid de-
noted by Rmax.

Theorem 1. Let D be a complete dioid. The least solution in x of
x � ax � b is x = a	b, where a	 = �kP0ak is the Kleene star of a.

The proof of this theorem is given in Gaubert (1992).
The problem of multivariable control tackled in this article in-

volves solving an inequality of the form A � x P B � x. In this prob-
lem, it is often usefull to address the existence of solutions that
makes synthesis of controller possible. In this respect, the follow-
ing lemma is actually a specific case of the results presented in
Allamigeon, Gaubert, and Goubault (2010). Earlier works on
resolution of this type of inequality can be found in Hegedüs and
Butkovic̆ (1984), Cuninghame-Green and Butkovic̆ (2003),
Butkovic̆, Schneider, and Sergeev (2007), in Walkup (1995) and
in Cechlárová (2005).

Lemma 1. Let v ;u 2 R1�n
max be given row vectors and x 2 Rn

max. The
inequality v � x P u � x admits a non-trivial solution if and only if
there exists k 2 {1,2, . . . ,n} such that jvk P uk.

Let us call such index k a critical index. Let Ki be the set contain-
ing all critical indices in a row i of a matrix H. Cechlárová gives in
Cechlárová (2005) a necessary and sufficient condition for the exis-
tence of a solution for equation of the form H � x = Q � x with
H P Q. This condition is expressed in the following theorem. The
proof of this theorem is given in Cechlárová (2005). In this theo-
rem, �p denotes the set of row indices {1,2, . . . ,p} and �n is the set
of column indices {1,2, . . . ,m} of matrices H and Q.

Theorem 2. A system H � x = Q � x with H 2 R
p�n
max; H P Q, is

soluble if and only if
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